
VLSI System Design
Part II : Logic Synthesis (1)

Oct.2006 - Feb.2007

Lecturer : Tsuyoshi Isshiki
Dept. Communications and Integrated Systems,

Tokyo Institute of Technology

isshiki@vlsi.ss.titech.ac.jp
http://www.vlsi.ss.titech.ac.jp/~isshiki/VLSISystemDesign/top.html

mailto:isshiki@vlsi.ss.titech.ac.jp

Logic Synthesis
1. Logic synthesis types

a. Combinational logic synthesis
Two-level logic
Multi-level logic

b. Sequential logic (finite state machine) synthesis
State minimization
State encoding

2. Currently available logic synthesis CAD tool
Mainly two-level/multi-level logic synthesis
State code optimization for sequential logic

Logic Synthesis Flow

Boolean Network

Gate-level Netlist

Logic Optimization

Technology Mapping

Minimize # of literals

Speed
Area
Power

Technology-Dependent
Standard-Cell Library

RTL Description(Verilog, VHDL)

RTL-to-Logic Translation (1)

module str1101(clk, in, out);input clk, in;output out;reg [1:0] state;reg out;always@(posedge clk) beginstate <= 2’b00;out <= 0;case(state)2’b00: if(in == 1) state <= 2’b01;2’b01: if(in == 1) state <= 2’b10;2’b10: if(in == 0) state <= 2’b11;else state <= 2’b10;2’b11: if(in == 1) beginout <= 1;state <= 2’b01;endendcaseendendmodule

A) Combinational logic extraction :
RTL description is partitioned into combinational logic part and
storage elements (DFF, latches)

D Qcomb.
logicin

state
n_state
n_out

clk

reg [1:0] n_state;reg n_out;
always@(in or state) beginn_state = 2’b00;n_out = 0;case(state)2’b00: if(in == 1) n_state = 2’b01;2’b01: if(in == 1) n_state = 2’b10;2’b10: if(in == 0) n_state = 2’b11;else n_state = 2’b10;2’b11: if(in == 1) beginn_out = 1;n_state = 2’b01;endendcaseend
always@(posedge clk) beginstate <= n_state; out <= n_out;end

out

RTL-to-Logic Translation (2)
B) Logic equation transformation :

For each output variable, compute the conditions in which the
value evaluates as 1, 0, and don’t-care (DC).

beginn_state = 2’b00;n_out = 0;case(state)2’b00: if(in == 1) n_state = 2’b01;2’b01: if(in == 1) n_state = 2’b10;2’b10: if(in == 0) n_state = 2’b11;else n_state = 2’b10;2’b11: if(in == 1) beginn_out = 1;n_state = 2’b01;endendcaseend

if(state == 2’b00 && in == 1 ||state == 2’b10 && in == 0 ||state == 2’b11 && in == 1)n_state[0] = 1;else n_state[0] = 0;
if(state == 2’b01 && in == 1 ||state == 2’b10)n_state[1] = 1;else n_state[1] = 0;
if(state == 2’b11 && in == 1)n_out = 1;else n_out = 0;

n_state[0] = (~state[0] & ~state[1] & in ||~state[0] & state[1] & ~in ||state[0] & state[1] & in);
n_state[1] = (state[0] & ~state[1] & in ||~state[0] & state[1]);
n_out = state[0] & state[1] & in);

RTL-to-Logic Translation (3)

module str11011(clk, rst, in, out);input clk, in;output out;reg [2:0] state;reg out;always@(posedge clk) beginstate <= 3’b000;out <= 0;if(rst == 0)case(state)3’b000: if(in == 1) state <= 3’b001;3’b001: if(in == 1) state <= 3’b010;3’b010: if(in == 0) state <= 3’b011;else state <= 3’b010;3’b011: if(in == 1) state <= 3’b100;3’b100: if(in == 1) beginout <= 1;state <= 3’b010;enddefault: begin // don’t-care statestate <= 3’bx;out <= x;endendcaseendmodule

......reg [2:0] n_state;reg n_out;
always@(in or rst or state) beginn_state = 3’b000;n_out = 0;if(rst == 0)case(state)3’b000: if(in == 1) n_state = 3’b001;3’b001: if(in == 1) n_state = 3’b010;3’b010: if(in == 0) n_state = 3’b011;else n_state = 3’b010;3’b011: if(in == 1) n_state = 3’b100;3’b100: if(in == 1) beginn_out = 1;n_state = 3’b010;enddefault: begin // don’t-care staten_state = 3’x;out = x;endendcaseend
always@(posedge clk) beginstate <= n_state; out <= n_out;end
......

A) Combinational logic extraction

RTL-to-Logic Translation (4)
B) Logic equation transformation :

beginn_state = 3’b000;n_out = 0;if(rst == 0)case(state)3’b000: if(in == 1) n_state = 3’b001;3’b001: if(in == 1) n_state = 3’b010;3’b010: if(in == 0) n_state = 3’b011;else n_state = 3’b010;3’b011: if(in == 1) n_state = 3’b100;3’b100: if(in == 1) beginn_out = 1;n_state = 3’b010;enddefault: begin // don’t-care staten_state = 3’x;out = x;endendcaseend

if(state == 3’b000 && in == 1 ||state == 3’b010 && in == 0)n_state[0] = 1;else if(state == 3’b101 ||state == 3’b110 ||state == 3’b111)n_state[0] = x;else n_state[0] = 0;
if(state == 3’b001 && in == 1 ||state == 3’b010 ||state == 3’b100 && in == 1)n_state[1] = 1;else if(state == 3’b101 ||state == 3’b110 ||state == 3’b111)n_state[1] = x;else n_state[1] = 0;
if(state == 3’b011 && in == 1)n_state[2] = 1;else if(state == 3’b101 ||state == 3’b110 ||state == 3’b111)n_state[2] = x;else n_state[2] = 0;
if(state == 3’b100 && in == 1)n_out = 1;else if(state == 3’b101 ||state == 3’b110 ||state == 3’b111)n_out = x;else n_out = 0;

The study of logic synthesis started from two-level logic
Optimized two-level logic is often the starting point for multi-level
logic synthesis.
Several types of two-level logic

Sum-of-product (1st level : AND, 2nd level : OR)
NAND-NAND (has the same structure as sum-of-product)
Product-of-sum (1st level : OR, 2nd level : AND)
NOR-NOR (has the same structure as product-of-sum)

Boolean Function Implementation
Using Two-Level Logic

sum-of-product NAND-NAND
product-of-sum

All four circuits implement the same function

a

NOR-NOR

b
c
a
b

a
b
c
a
b

d d d

a
b
a
b
b
c

a
b
a
b
b
c

d

A programmable logic array is a device which can implement
arbitrary Boolean function in sum-of-product form with N inputs, M
outputs, and R products (cubes).
Minimizing the number of products R results in smaller area (N and
M are fixed for a given function)

Programmable Logic Array

a b c f0 f1

pull-up
resistor

1st level NOR-plane 2nd level NOR-plane

input inverter output inverter

)(baba =+

)(caca =+

)(cbcb =+

)(baba =+

cabaf

cbcabaf

+=

++=

1

0

Boolean Function Terminologies (1)

1. Boolean function f with N inputs and M outputs is a mapping
f : {0, 1}N → {0, 1, X }M. (X : don’t-care)

2. If mapping to don’t-care values does not exist, the function is said to
be completely specified. Otherwise it is said to be incompletely
specified.

3. If M = 1, it is called a single-output function. Otherwise it is called a
multiple-output function.

4. For each output fm of function f :
• ON-set is defined as the set of input values x such that fm(x) = 1
• OFF-set is defined as the set of input values x such that fm(x) = 0
• DC-set is defined as the set of input values x such that fm(x) = X

5. A literal is a Boolean variable or its complement.
6. A cube is a conjunction of literals (a product term).
7. A cover is a set of cubes (interpreted as sum-of-product term).

Boolean Function Terminologies (2)
8. A bit vector notation of a cube describes the polarity of each literal

(0 : complemented literal, 1 : uncomplemented literal) for each
variable in the Boolean function. If a variable does not appear in the
cube, it is denoted as ‘-’ (also don’t-care)
Ex. x3 x2 x1 x0 → 1010 x3 x2 x0 → 11-0

9. A cube is called a k-cube if there are k elements of ‘-’ (don’t-care) in
the bit vector notation.

10. A minterm is a cube that contains all variables in the Boolean function.
Each minterm belongs to either the ON-set, OFF-set or the DC-set of
a particular output of the function. A minterm is a 0-cube.

if(state == 3’b000 && in == 1 ||state == 3’b010 && in == 0)n_state[0] = 1;else if(state == 3’b101 ||state == 3’b110 ||state == 3’b111)n_state[0] = x;else n_state[0] = 0;
function fn_state[0] (state[2], state[1], state[0], in)

ON-set

DC-set

OFF-set

0001 0100 0000 001-
0101 011- 100-

101-
110- 111-

11. The input variable space {0, 1}N can be modeled as a binary N-
dimensional hypercube

Each vertex in the hypercube represents a minterm.
k-cube is represented by a binary k-dimensional hypercube
k-dimensional hypercube is sometimes referred to as “binary k-cube”

Boolean Function Terminologies (3)

0001 0011

1001 1011

01110101

1101 1111

0000 0010
01100100

1100 1110
10101000

OFF-set

ON-set

DC-set

state[2]

0

state[1]

state[0]
in

ON-set

DC-set

OFF-set

0001 0100 0000 001-
0101 011- 100-

101-
110- 111-

function fn_state[0] (state[2], state[1], state[0], in)

12. Analogy of Boolean algebra to Class calculus (Set Theory)
logic variable → set
logic negation → complement set
logical 1 → universal set
logical 0 → null set (φ)
logical AND → set intersection (a ⋅ b → a ∩ b)
logical OR → set union (a + b → a ∪ b)

Boolean Function Terminologies (4)

universal set

a a a b a b

a ⋅ b (a ∩ b) a + b (a ∪ b)

13. Partial order and containment
Partial order of logic variables : f ≤ g ⇔ (if f = 1, then g = 1) ⇔ f ⋅ g = f

Interpretation in set theory → containment of sets : f ⊆ g
Partial order of logic expression (cubes and covers) :
a b c ≤ a b → a b c ⊆ a b
b c ≤ a b + a c → b c ⊆ a b + a c
a c + b c ≤ a b + a c + a b c → a c + b c ⊆ a b + a c + a b c
Terminologies for set theory (intersection, union, containment) is often
applied to logic expressions.

Boolean Function Terminology (4)

a b

c

a b

c

a b

c

a b c ⊆ a b b c ⊆ a b + a c

a b c a c

a b

a c + b c ⊆ a b + a c + a b c

a c

a b

a b c

b c
a c a b

b c

14. An implicant for a particular output of a function is a cube which contains
minterms only in the ON-set and DC-set. (In other words, a cube which
does not intersect with the OFF-set)

15. A prime implicant (or simply, prime) is an implicant that is not contained
by any other implicant, and intersects with the ON-set.

16. An essential prime implicant (or essential prime) is a prime that contains
one or more minterms which are not contained by other primes.

17. A legal cover for a function is a set of implicants which contains the ON-
set and does not intersect with OFF-set (may intersect with DC-set).

Boolean Function Terminology (5)

ON-set
DC-set
OFF-set

Implicants :

Primes :
Essential primes :
Legal cover :

a b c
a b c a b c a b c

a b c
a b c a b c a b c

a b c, a b c,
a b c, a b c, a b c,
a b, a b, a c, b c

a b, a c, b c
a b , a c

a b + a c

Input : Boolean function representation using
Truth table or
Set of cubes in the ON-, OFF- and DC-sets.

Since the union of the ON-, OFF- and DC-sets is the universal set,
specifying two sets (ex. ON-set and DC-set) is sufficient for
describing a Boolean function.
For a completely specified function, only the ON-set is needed.

Output : optimized Boolean function in terms of number of cubes (or
sometimes number of literals)
Algorithm :
A) Enumerate all prime implicants of the target function
B) Select a minimum set of prime implicants which are required to

contain the ON-set of the target function.

Two-Level Logic Optimization

For a pair of cubes A and B, if there exists an cube C such that A + B
= C, then A and B are said to be adjacent and are reducible to C.
On the bit-vector representations, adjacency of a pair of implicants
can be determined by comparing elements in each position : if only
one position is different, and if all ‘-’ positions are same, then the
implicant pair is adjacent.

Preparation : Cube Reduction

a b c d

1 1 1 0
1 1 1 1
1 1 1 -
1 1 0 -
1 1 1 -
1 1 - -

reducible

reducible

don’t-cares at the same position

a b c d
a b c d

a b c

a b c
a b c

a b

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (1)

x[3:0] f[1]----------0000 00001 10010 00011 00100 00101 10110 00111 x1000 11001 01010 11011 01100 11101 11110 11111 0

truth table
x[3:0] f[1]----------0001 1 *0101 1 *0111 x *1000 1 *1010 1 *1100 1 *1101 1 *1110 1 *

x[3:0] f[1]----------0-01 101-1 1-101 110-0 1 *1-00 1 *1-10 1 *110- 111-0 1 *

x[3:0] f[1]----------1--0 1

0-cube table

1-cube table

2-cube table

1. Prime implicant extraction
A) From the truth table, delete minterms in OFF-set.

(0-cube table : contains only minterm implicants)
B) k=0．
C) Let N be the # of rows in k-cube table.

If N=0, then terminate.
D) for(i = 0; i < N; i ++)

for(j = i + 1; j < N; j ++)
If rows i and j are adjacent,
• mark these 2 rows with ‘ * ’
• add a reduced cube to (k+1)-cube table
• Output part of the reduced cube is 1 if it

intersects with the ON-set. Otherwise (if it is
fully contained in the DC-set), it is x.

E) k=k+1. Go to C) .
F) Rows whose output is 1 and without ‘ * ’ marked

are the prime implicants.

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (2)

x[3:0] f[1]----------
0001 1 *
0101 1 *
0111 x *
1000 1 *
1010 1 *
1100 1 *
1101 1 *
1110 1 *

x[3:0] f[1]----------
0-01 1
01-1 1
-101 1
10-0 1 *
1-00 1 *
1-10 1 *
110- 1
11-0 1 *

x[3:0] f[1]----------
1--0 1
1--0 1

0-cube table 1-cube table 2-cube table

identical cubes are
generated here.
(delete the 2nd cube
from the list)

x[3:0] f[1]---------0001 10101 11000 11010 11100 11101 11110 1

0 0 - 1 1- 1 1 1 -0 - 0 0 -1 1 1 - 0---------------XX X X XXX XX X X

prime implicant2. Prime implicant table generation
A) Assign ON-set minterms to each row
B) Assign prime implicants to each column
C) For each minterm row, mark an ‘X’ at the

column whose prime implicant contains this
minterm

3. Prime implicant cover extraction
containing all ON-set minterm

（minimum unate covering problem：NP-complete）
A) Delete dominated prime (column) and

dominating minterm (row)
B) Extract essential primes and delete all

minterms (rows) which are contained in these
essential primes.

C) Arbitrary select a prime and delete all minterms
which are contained in this prime.

ON-set minterm

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (3)

Techniques to reduce
the problem complexity
(can be applied in any order)

x[3:0] f[1]---------0001 10101 11000 11010 11100 11101 11110 1

0 0 - 1 1- 1 1 1 -0 - 0 0 -1 1 1 - 0---------------XX X X XXX XX X X

• Row 0101 is the
dominating minterm of row
0001.
• Row 1100 is the
dominating minterm of rows
1000, 1010 and 1110.

3.A Elimination of dominating minterms
Prime set for a minterm
A set of primes which contain the minterm
Ex: prime set for 0101 is {0-01, 01-1, -101}
Dominating minterm :
On a pair of minterms, if the prime set of one
of the minterm contains that of the other, the
former minterm is said to be the dominating
minterm of the latter.

Prime set is the set of candidate for
covering the particular minterm.
Dominating minterms can be eliminated
from the problem since the prime which
covers some dominated minterm always
covers the corresponding dominating
minterm.

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (4)

x[3:0] f[1]---------0001 10101 11000 11010 11100 11101 11110 1

0 0 - 1 1- 1 1 1 -0 - 0 0 -1 1 1 - 0---------------XX X X XXX XX X X

• Column 01-1 is the
dominated prime of column
0-01 and -101.

3.A Elimination of dominated primes
Minterm set for a prime
A set of minterms which are contained by the
prime
Ex: minterm set for 0-01 is {0001, 0101}
Dominated prime :
On a pair of primes, if the minterm set of one
of the prime contains that of the other, the
latter prime is said to be the dominated prime
of the former.

Dominated primes can be eliminated
from the problem since the entire
minterm set of a dominated prime is
always covered by the dominating prime.

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (5)

x[3:0] f[1]---------0001 11000 11010 11101 11110 1

0 - 1 1- 1 1 -0 0 0 -1 1 - 0------------X XXX X X

essential primes

x[3:0] f[1]---------0001 10101 11000 11010 11100 11101 11110 1

0 0 - 1 1- 1 1 1 -0 - 0 0 -1 1 1 - 0---------------XX X X XXX XX X X

x[3:0] f[1]---------1101 1

- 11 1 0 0 1 -------X X

3.B Extraction of essential primes
An essential prime implicant (or essential prime) is a prime
that has at least one ON-set minterm which are not
contained in any other primes. Such minterms are called
essential minterms.

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (6)

x[3:0] f[1]---------1101 1

- 11 1 0 0 1 -------X X

3.C Arbitrary selection of remaining primes
If 3.A (elimination of dominating minterms and dominated primes)
and 3.B (essential prime extraction) cannot further be applied, select
an arbitrary remaining prime and delete the rows (minterms) which is
contained in this prime. Try 3.A and 3.B again.
If all minterms have been covered, then TERMINATE.
In order to obtain an optimal cover, do all combinations of the
arbitrary prime selection.

x[3:0] f[1]---------

11 0 ----

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (7)

select an arbitrary prime No minterm left to cover
TERMINATE

0 0 - 1 1- 1 1 1 -0 - 0 0 -1 1 1 - 0---------------XX X X XXX XX X X

x[3:0] f[1]---------0001 10101 11000 11010 11100 11101 11110 1

obtained prime cover

x[3:0] f[1:0]----------0000 000001 100010 000011 0x0100 0x0101 100110 010111 x01000 111001 001010 111011 011100 1x1101 111110 101111 00

truth table

1. Prime Implicant Extraction
A) Extract the prime implicants for each output seperately.

Multiple-Output 2-Level Logic Minimization
Using Quine-McCluskey Method (1)

x[3:0] f[1]----------0001 1 *0101 1 *0111 x *1000 1 *1010 1 *1100 1 *1101 1 *1110 1 *

x[3:0] f[1]----------0-01 101-1 1-101 110-0 1 *1-00 1 *1-10 1 *110- 111-0 1 *

x[3:0] f[1]----------1--0 1

0-cube table 1-cube table 2-cube table

x[3:0] f[0]----------0011 x *0100 x *0110 11000 1 *1010 1 *1011 1 *1100 x *1101 1 *

x[3:0] f[0]-----------011 1-100 x10-0 11-00 1101- 1110- 1

0-cube table 1-cube table

f[1] f[1] f[1]

f[0]
f[0]

not a prime implicant
because the output is ‘x’

x[3:0] f[1:0]----------0-01 1001-1 10-101 10110- 111--0 10
0110 01-011 0110-0 111-00 11101- 01110- 11

prime implicant list

2. Prime Implicant List Merging
mth prime implicant list corresponds to the prime
implicant list for the mth output
mth outputs in mth prime implicant list are all 1s by
definition

A) For each prime p in the all prime implicant lists
• mth output is 1 if there exists a prime in the mth

prime implicant list which contains p.
• mth output is 0 otherwise.

This allows implicants other than the primes to be
included in the candidate for minterm covering.

Multiple-Output 2-Level Logic Minimization
Using Quine-McCluskey Method (2)

these are identical primes
delete one of them from the list

3. Prime implicant table
generation

A) Assign ON-set minterms to each
row for each output

B) Assign prime implicants to each
column

C) For each minterm row,
• mark an ‘|’ at the column whose

output part of the corresponding
prime implicant is 0 for the
corresponding output of this
minterm

• Otherwise, mark an ‘X’ at the
column whose prime implicant
contains this minterm

Multiple-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (3)

0 0 - 1 1 0 - 1 1 1- 1 1 1 - 1 0 0 - 00 - 0 0 - 1 1 - 0 11 1 1 - 0 0 1 0 0 -------------------------------X | | |X X X | | |X | | X X |X | | X |X X | | X |X X | | |X | | |------------------------------| | | | X | | | | X X| | | | X X| | | | X X| | | X |

x[3:0] f[1:0]----------0001 1-0101 1-1000 1-1010 1-1100 1-1101 1-1110 1-----------0110 -11000 -11010 -11011 -11101 -1

These primes cannot be used for covering
because they intersect with the OFF-set of
the corresponding output

4. Prime implicant cover extraction
containing all ON-set minterms
(same as the single-output case)

Multiple-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (4)

0 0 - 1 1 0 - 1 1 1- 1 1 1 - 1 0 0 - 00 - 0 0 - 1 1 - 0 11 1 1 - 0 0 1 0 0 -------------------------------X | | |X X X | | |X | | X X |X | | X |X X | | X |X X | | |X | | |------------------------------| | | | X | | | | X X| | | | X X| | | | X X| | | X |

x[3:0] f[1:0]----------0001 1-0101 1-1000 1-1010 1-1100 1-1101 1-1110 1-----------0110 -11000 -11010 -11011 -11101 -1

0 1 1 0 1 1- 1 - 1 0 00 0 - 1 - 11 - 0 0 0 -------------------X | |X | |------------------| | X | | X | | X| X |

x[3:0] f[1:0]----------0001 1-1110 1-----------0110 -11000 -11011 -11101 -1

0 - 1 1 0 1 1 1- 1 1 - 1 0 - 00 0 0 - 1 - 0 11 1 - 0 0 0 0 -------------------------X | |X X | |X | |------------------------| | | X | | | X X| | | X X| | | X| | X |

x[3:0] f[1:0]----------0001 1-1101 1-1110 1-----------0110 -11000 -11010 -11011 -11101 -1

Improving Quine-McCluskey Method
(Espresso-EXACT, UC Berkeley)

• Problems
– Need to specify all minterms
– Need a large number of cube reducibility tests.

Only a small portion will pass the test to generate reduced cubes.
Identical primes may be generated multiple times.

– Size of the prime implicant table is large since each row
corresponds to minterms

• Improvements
– Extract all the prime implicants directly without enumerating

minterms.
– Generate a reduced prime implicant table and solve the minimum

covering problem on this smaller table.

Direct Extraction of Prime Implicants
(Preperation 1)

• Corollary 1 : Let P be a cover for a completely specified function f.
For any implicant c of f, there exists c’ ∈ P such that c ⊆ c’ if and only
if P includes all primes of f.

• Theorem 1 : Let Pf and Pg be the covers for completely specified
functions f, and g, respectively. And let Pfg be Pf ⋅ Pg that is expanded
in sum-of-product form. If Pf and Pg include all primes for f and g,
respectively, then Pfg includes all primes of function f ⋅ g.

• Proof :
By definition, Pfg is a cover whose cube elements are the non-zero
conjunctions of a cube in Pf and cube in Pg ;

Pfg= {cf ⋅ cg | cf∈ Pf , cg ∈ Pg , cf ⋅ cg ≠ 0 }.
Any implicant of the function f ⋅ g is also an implicant for both f and g (if f ⋅ g
is true, then both f and g must be true as well). Thus for any implicant c of f
⋅ g, there exists cf ∈ Pf and cg ∈ Pg such that c ⊆ cf and c ⊆ cg. Therefore c ⊆
cf ⋅ cg ∈ Pfg.

Direct Extraction of Prime Implicants
(Preperation 2)

• Theorem 2： Let P be a cover for a completely specified function f,
and P’ be the cover for the complement of f (denoted as f) which is
obtained by applying De-Morgan’s Law to P and then expanding it to
sum-of-product form. P’ includes all primes of f.
(Let us call this the Negate-And-Expand Method)

• Proof :
• Let P = c0 + c1 + …+ cn (ci is a cube)
• By De-Morgan’s Law : P = c0 + c1 + …+ cn = c0 ⋅ c1 ⋅ … ⋅ cn ---- (1)
• A complement of a cube becomes a cover composed of single-

literal cubes. Each single-literal cube is the prime of this cover.
Ex. x0 ⋅ x1 ⋅ x2 = x0 + x1 + x2

• Since each term in eq(1) becomes a cover composed of primes
for that cover, expanding these terms into sum-of-product form
results in a cover composed of all primes of f. (according to
Theorem 1)

Negate-And-Expand Method
x[3:0] f----------0-1 11-10 1-01- 101-- 11--1 1

negate
cubes

01--010--10--10--1-1 -101 01-0 0-00 -100 --00
1----0--
0------0

01---10--1-1 --00
1----0--
0------0

110-11-1 1-00 -000
0------0

-1-----0
0-----0----1
-1----0-
1----0--
0------0

01---10--1-10--0--00
-1----0-
1----0--
0------0

AND

000011001-00-000

1-00-000

Single Cube Containment Minimality
01--010- *-10--10- *-1-1 -101 *01-0 *0-00 *-100 *--00

For each cube in the list, if some
other cube contains it, then delete
this cube from the list.
Ex：
01-- contains 010- (delete 010-)
-1-1 contains -101 (delete -101)

delete

simplify

simplify
AND

AND
AND

Direct Extraction of Prime Implicants for
Completely Specified Functions

By applying Negate-And-Expand twice on a cover for a completely
specified function f, the obtained cover becomes the entire set of
primes for f .

Ex. f = x0 x2 + x0 x1 x3 + x1 x2 + x2 x3+ x0 x3

x[3:0] f----------0-1 11-10 1-01- 101-- 11--1 1

1-00 -000
0-----1----1
-1----1----1

01--0-1-0--1-11---1---11-1-1--11---1

01----1----1
negate
cubes

Negate-And-Expand
(2nd time)

x[3:0] f

0000 0
0001 1
0010 1
0011 1
0100 1
0101 1
0110 1
0111 1
1000 0
1001 1
1010 1
1011 1
1100 0
1101 1
1110 1
1111 1

truth table
Negate
And
Expand
(1st time)

AND

simplify

Direct Extraction of Prime Implicants for
Incompletely Specified Functions

For an incompletely specified function f , apply the Negate-And-
Expand operations twice on the cover containing both the ON-set
and DC-set. The obtained cover includes all primes of f and
possibly other implicants which do not intersect with the ON-set.
(DC-implicants)

x[3:0] f----------0-1 11-10 1-01- x01-- x1--1 x
x[3:0] f

0000 0
0001 1
0010 x
0011 1
0100 x
0101 x
0110 x
0111 x
1000 0
1001 1
1010 1
1011 1
1100 0
1101 x
1110 1
1111 x

1-00 -000

Negate-And-Expand
(1st time)

01----1----1
--1----1

Q

OFF-set
R

ON-set
F

DC-set
D

entire prime
set Q

truth table

(OFF-set cover)

Negate-And-Expand
(2nd time)

Eliminate
DC-implicants

(Prime set)

ON-set

DC-set

(Prime set + DC-implicants)
R = F ∪ D Q’ = F ∪ D

Function Negation Methods (1)

Computation time of Negate-And-Expand operation can become very
long when there are a large degree of redundancy in the cover
representation of the function (i.e. a large number of small cubes).
While the 2nd negation requires Negate-And-Expand operation in
order to obtain the entire prime set, the obtained cover after the 1st

negation (OFF-set cover) does not have to be the entire prime set for
the negated function.
Shannon Expansion method can be used for the 1st negation to obtain
the OFF-set cover.
The cover obtained by Shannon Expansion does not include all
primes for the negated function, but its redundancy is relatively low.
Also, the computational complexity is significantly lower than Negate-
And-Expand Method.

• fxi : cofactor of f with respect to factor xi
fxi = f (x0, …, xi–1, 1, xi–1, …, xn–1), fxi = f (x0, …, xi–1, 0, xi–1, …, xn–1)

Ex : f = a b c + a c d + b c d
fa = b c + c d + b c d, fa = b c d, fac = d + b d

• Shannon expansion : f = xi fxi + xi fxi

• Shannon expansion negation : f = xi fxi + xi fxi

• Recursive Shannon expansion negation :
Ex : f = a b c + a b c + b c
f = a fa +a fa = a (b c + b c + b c) + a (b c)
fa = b fab +b fab = b (c) + b (c + c) = b c
fa = b fab +b fab = b (0) + b (c) = b + b c
f = a fa +a fa = a (b c) + a (b + b c) = a b c + a b + a b c

Shannon Expansion

Function Negation by Shannon Expansion (1)

x[3:0] f=========-0-1 11-10 1-01- 101-- 11--1 1

1---=====-0-1 --10 -01----1

0---=====-0-1 -01--1--

1--1=====-0---01-----

1--0=====--1--01- 1-00=====

1-10=====-----0--

01--=====----
00--=====---1 --1-

001-=====---1 ----
000-=====---1

0001=====----
0000=====

x[3]

x[0]

x[2]

factor

x[1]

x[1]

x[0]

factor’s
bit-vector

Cofactor cover

0001001-01--1-101--1

00001-00

If the cofactor cover
includes a universal
cube (all ‘-’), negation
of this cofactor is 0.

If the cofactor cover
is a null set,
negation of this
cofactor is 1.

To choose the cofactor, select the
variable whose corresponding
column has the least number of ‘-’
as the cofactor.

The set of factors whose leaf cofactor
is 0 is equivalent to the OFF-set cover.
The set of factors whose leaf cofactor
is 1 is equivalent to the ON-set cover.

Shannon Expansion on
Multiple-Output Function

x[3:0] f[1:0]----------0-1 111-10 10-01- 0101-- 111--1 01
x[3:0] f[1]----------0-1 11-10 101-- 1

x[3:0] f[0]----------0-1 1-01- 101-- 11--1 1
1---=====-0-1 --10

0---=====-0-1 -1--
1--1 =====-0--

1--0 =====--1-
01--=====----

00--=====---1
1-00 =====11-1 ===== 00-0=====

-1--=====0---1--1

-0--=====---1 --1-1--1
11--=====---1

01--=====----
-0-1=====------1-1---

-0-0=====--1-
-000=====11-0=====

11-1 1-1-00 1-00-0 1-
11-0 -1-000 -1

OFF-set cover for f1 OFF-set cover for f0

f1 = x0x2 + x0x1x3 + x2x3

f0 = x0x2 + x1x2 + x2x3 + x0x3

Negate-And-Expand Method for
Multiple-Output Functions

OFF-set cover

0----0-----0
0-----1----1
1----1-----1

0----01--0-1--10
1----1-----1

0----0-----1
-1----1----1

01--0--1101--01110-1-0-11-10-110

01--0--1101--0-11-10-110

01--0-1-0--1-01--0-1-1-1--11---1

01--0-1--01----1

0---0-1-0--100---01--0-10--0--10
1----1-----1

01-- 1-0--1 1-101- 1--0-1 1-1-10 1--110 1-01-- -10-1- -1-01- -1---1 -1

01-- 110--1 11101- 11-0-1 111-10 10-110 100-1- 01-01- 01---1 01

merge
tables Simplify

11-1 1-1-00 1-00-0 1-
11-0 -1-000 -1

Reduced Prime Implicant Table
Generation (1)

• Essential prime set Er = {c | c ∈ Q, F ⊆ Q – c} :
c is an essential prime if the prime set excluding c (“Q – c ” denotes the
set Q whose element c is eliminated) does not contain the ON-set cover
F. (therefore c is essential for covering F)
Checking F ∩ c ⊆ Q – c (instead of F ⊆ Q – c) is sufficient.

• Containment check
A ⊆ B ⇔ c ⊆ B for ∀c ∈ A (A, B : cover, c : cube)

In order for a cover to be contained in another (partial order), all
cube included in the former needs to be contained in the latter.

c ⊆ B ⇔ Bc ≡ 1 (Bc : cofactor of B with respect to cube c)
B ≡ 1 ⇔ Bx ≡ 1 ∧ Bx ≡ 1 (tautology check by recursion)

B =====-1001-10100-01-100--

c =====-0-0
Bc=====1-1-1-0-0---

Bc x=====--1---0-
Bc x=====----

–factoring
with c

⇒ tautology

⇒ tautology
⇒ c ⊆ B

factoring
with xx

Recall: c ⊆ B ⇒ c ·B= c

Reduced Prime Implicant Table
Generation (2)

• Relatively redundant prime set Rr = Q – Er

• Totally redundant prime set Rt = {c | c ∈ Rr , c ⊆ Er}
• Partially redundant prime set Rp = Rr – Rt

• On obtaining a minimal prime set which covers the ON-set F
Er is always included
Rt is never included
Rp is the portion of the total prime set which is considered in the minimum
covering problem.

Each element of Rp corresponds to the columns of the reduced prime
implicant table.
Minterm set Mp which needs to be covered （rows of the reduced
prime implicant table）

Mp = Er∩ Rp

m ∩ Er = φ (m ∈ Mp)

–

Reduced Prime Implicant Table
Generation (3)

• Computation of minterm set Mp (actually, each row may
represent a collection of minterms)

For each cube c ∈ Rp, consider the set R’ = Rp – c.
Recursively divide c into smaller cubes at its don’t-care variables

• Ex. 0-1- → (001-,011-) → ((0010,0011),(0110,0111))
On each divided cubes c’:

• If c’ ⊆ Er, then c’ is not included in Mp.
• If there exists a cube d ∈ R’ such that c’ ⊆ d, then all minterms

included in c’ is covered by the prime d. If so, add c’ to the row and
mark ‘X’ to all columns which contain c’. (Note that there may be
several cubes which contain c’)

If one of the two conditions above is satisfied, then c’ does not
have to be divided anymore.

Reduced Prime Implicant Table
Generation (4)

Er=====01--10--

Rp=====0-1--01--1011-01

c = 0-1- 001- ⊆ -01- ∈ R’011- ⊆ 01-- ∈ Er→
R’=====-01--1011-01

c = -01- 001- ⊆ 0-1- ∈ R’101- ⊆ 10-- ∈ Er→
R’=====0-1--1011-01

| 0 - - 1| - 0 1 -| 1 1 0 0| - - 1 1-----|-----------001- | X X
| 0 - - 1| - 0 1 -| 1 1 0 0| - - 1 1-----|-----------001- | X X

c = -101 0101 ⊆ 01-- ∈ Er1101 ⊆ 1-01 ∈ R’→
R’=====0-1--01-1-01

| 0 - - 1| - 0 1 -| 1 1 0 0| - - 1 1-----|-----------001- | X X1101 | X X

c = 1-01 1001 ⊆ 10-- ∈ Er1101 ⊆ -101 ∈ R’→
R’=====0-1--01--101

| 0 - - 1| - 0 1 -| 1 1 0 0| - - 1 1-----|-----------001- | X X1101 | X X

Reduced Prime Implicant Table
Generation (5)

F =====-1001-10100-01-1001-0-11

R =====11-11-11000-0110

Q =====100-1--0010--10001-1001--0100-11

Er=====100-1--0

Rp=====010--10001-1001--0100-11
| 0 - 0 0 - 0| 1 1 1 0 0 -| 0 0 - 1 1 1| - 0 1 - 0 1-----|-------------------0010 | X X0011 | X X0100 | X X0101 | X X0111 | X X

| 1 1 0 - 0 0 - 0| 0 - 1 1 1 0 0 -| 0 - 0 0 - 1 1 1min | - 0 - 0 1 - 0 1-----|-------------------------0010 | X X0011 | X X0100 | X X0101 | X X0111 | X X1000 | X X1001 | X1010 | X X1100 | X X1110 | X

Prime implicant table

Reduced prime implicant table

Mｐ=====00100011010001010111

Rt = φ
Mp

ON-set cover
(initial) OFF-set cover Prime set cover

Essential
prime set

Minterms
uncovered by Er

Totally
redundant
prime set

Partially
redundant
prime set

Reduced Prime Implicant Table Generation (6)
F =====-10011010-11--1011-01-11-00-01-11-1

R =====00-1-00--0100---001-0-01-11-00--0-0

Q =====101--1-11-1-1-111--1011---111--11-1-1-010--01--101

Er=====101--11--1011--0--01
Rp=====1-11--111-

Mp=======11110

| 1 -| - 1 | 1 1 | 1 1 | - -------|-------11110 | X X

| 1 1 1 1 0 - - - 0 -| 0 - - 1 1 1 1 1 - -| 1 1 1 - 1 1 1 - - 1 | - 1 - - - 1 - 0 0 0 min | - - 1 1 - - 1 1 1 1 ------|-------------------------------00001 | X 00101 | X X 01001 | X X 01100 | X 01101 | X X X X X 01110 | X X 01111 | X X X 10100 | X 10101 | X X X 10110 | X X 10111 | X X X 11001 | X X 11011 | X 11101 | X X X X X11110 | X X 11111 | X X X X X

Prime implicant table

Reduced prime implicant table

Rt=====1-1-1-11-1-1-01--101

Mp

Summary on
Two-Level Logic Optimization

• Two-level logic optimization is first proposed by
Quine and McCluskey, and since then has been
studied widely.

• Based on Quine-McCluskey method, improvements
have been made in prime extraction, prime table
generation, covering techniques to reduce the
computation time.

• Even though the computational complexity is NP-
complete (due to prime covering problem), near-
optimal solution can be obtained in short time.

• There are heuristic algorithms which solve the
prime extraction/prime covering problems iteratively.

	VLSI System Design�Part II : Logic Synthesis (1)�Oct.2006 - Feb.2007�
	Logic Synthesis
	Logic Synthesis Flow
	RTL-to-Logic Translation (1)
	RTL-to-Logic Translation (2)
	RTL-to-Logic Translation (3)
	RTL-to-Logic Translation (4)
	Boolean Function Implementation �Using Two-Level Logic
	Programmable Logic Array
	Boolean Function Terminologies (1)
	Boolean Function Terminologies (2)
	Boolean Function Terminologies (3)
	Boolean Function Terminologies (4)
	Boolean Function Terminology (4)
	Boolean Function Terminology (5)
	Two-Level Logic Optimization
	Preparation : Cube Reduction
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (5)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (6)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (7)
	Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)
	Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)
	Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)
	Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)
	Improving Quine-McCluskey Method �(Espresso-EXACT, UC Berkeley)
	Direct Extraction of Prime Implicants�(Preperation 1)
	Direct Extraction of Prime Implicants�(Preperation 2)
	Negate-And-Expand Method
	Direct Extraction of Prime Implicants for Completely Specified Functions
	Direct Extraction of Prime Implicants for Incompletely Specified Functions
	Function Negation Methods (1)
	Shannon Expansion
	Function Negation by Shannon Expansion (1)
	Shannon Expansion on �Multiple-Output Function
	Negate-And-Expand Method for �Multiple-Output Functions
	Reduced Prime Implicant Table Generation (1)
	Reduced Prime Implicant Table Generation (2)
	Reduced Prime Implicant Table Generation (3)
	Reduced Prime Implicant Table Generation (4)
	Reduced Prime Implicant Table Generation (5)
	Reduced Prime Implicant Table Generation (6)
	Summary on �Two-Level Logic Optimization

