VLSI System Design
Part Il : Logic Synthesis (1)

Oct.2006 - Feb.2007

Lecturer : Tsuyoshi Isshiki

Dept. Communications and Integrated Systems,
Tokyo Institute of Technology

Isshiki@vlsi.ss.titech.ac.|p
http://www.vlsi.ss.titech.ac.jp/~isshiki/VLSISystemDesign/top.html

mailto:isshiki@vlsi.ss.titech.ac.jp

Logic Synthesis

1. Logic synthesis types

a. Combinational logic synthesis
« Two-level logic
o Multi-level logic
b. Sequential logic (finite state machine) synthesis

o State minimization
« State encoding

2. Currently available logic synthesis CAD tool

o Mainly two-level/multi-level logic synthesis
o State code optimization for sequential logic

Logic Synthesis Flow

RTL Description(Verilog, VHDL)

A 4

[Logic Optimization| « Minimize # of literals

Boolean Network

Technology-Dependent |

Standard-Cell Library

Y « Speed
_.[Technology Mapping} o« Area
o Power

Gate-level Netlist

RTL-to-Logic Translation (1)

A) Combinational logic extraction :
RTL description is partitioned into combinational logic part and

storage elements (DFF, latches)

nodul e str1101(clk, in, out);

i nput clk, in; reg [1:0] n_state;

out put out : reg n_out;
;Sg [Oﬁt O] St at e, “““““““““ a- |--\;\Hyné@z-I-h---()-F---S-t--a-.f-enjnnnb--e-gnnlnh ------------------------
I eg errrer e : n_state = 2’ b0O:;
sal MVS@('Db'SéUg@ CTR') "BEGIH : ! nout = O
: gL?t 3_<0.2 b00 : : case(stat e)
case(stafe) : : 2'b00: if(in ==1) n_state = 2’ b01;
R __ - 2" hO1: 2" b01: if(in == 1) n_state = 2’ bl0;
2/000: if(in ==1) state <= 27°b0l, 2'b10° if(in == 0) n_state = 2" bll
2’b01: if(in == 1) state <= 2’ bl0; " else n _state = 2’ bl0; '
2’ bl1l0: i f(l n == O) state <= 2’ bll, 2" bll: i f(l —_ 1) b; in ’
el se state <= 2’ bl0; ' N out__— 1 9
2'bl1: if(in == 1) begin n“state = 2’ bol:
OUt <= 1 . . — - ’
state <= 2’ b01; : Lot endcase end
end et end :
endcase o
end R LR R TR R LR EEELEEELEEEEL TR EEELEEELLEEELEEEELEEEEY
: : : al ways@ posedge cl k) begin
iendmodul e - state <= n_state; out <= n_out;

RTL-to-Logic Translation (2)

B) Logic equation transformation :
For each output variable, compute the conditions in which the
value evaluates as 1, 0, and don’t-care (DC).

: begin : iif(state == 22b00 && in == 1 || :
i n_state = 2’ b0O0; : 5 state == 2’b10 && in == 0 ||
n_out = O; : : state == 2'b11 && in == 1) :
case(state) : : n_state[0] = 1;
2'b00: if(in ==1) n_state = 2'b01; ‘: ielse n state[O] = 0; :
2'b01: if(in == 1) n_state = 2'bl0; i .::::x:::x:::x:::x:::x:::x:::x:;
2’ b10: if(in == 0) n_state = 2’ bll; : iif(state == 2°b01 && in == 1 ||:
el se n_state = 2’ bl0; : g state == 2’ b10) :
2" b1l: if(in == 1) begin : : n_state[l] = 1;
n_out = 1; : ielse n state[11 =0 :
end : fif(state == 2'bll & & in == 1) i
: endcase : : n_out = 1;
: end : iel se n_out = O;

in_state[0]
(~state|
~stat e
state[O

] & ~state[1] &in ||
] & state[l] & ~in ||
& state[l] & in);

§ n_state[l] =
! (state[0] & ~state[l] & in ||
~state[0] & state[1l]);

in_out = state[0] & state[1] & in); i

RTL-to-Logic Translation (3)

A) Combinational logic extraction

nodul e str11011(clk, rst, in, out); oo : :
input clk, in: reg [2:0] n_state;

out put out et .
:gg gﬁio] state: P almays@@(ln or rst or state) begin :
&9 - : n_state = 3’ b00O;
a1mHVS@$(p5SéUgé CTk) BEYI"H : : nout = O
: state <= 3'h0 : : if(rst == 0)
?Fzr;; 0, 0) : : case(state)
case(;{ate) : : 3 b000: 1f(in == 1) n_state = 3’ b001,
T T S I B S]
3'b001: if(in == 1) state <= 3'b010; : : " else n _state = 3’ b010; '
3'b010: if(in == 0) state <:.3’b011;5 : 3'b011: if(in == 1) n_state =" 3' b100;
: . else state <= 3 b010; | i : 3" b100: if(in == 1) begin
3'b011: if(in == 1) state <= 3’ bl00; : : n out = 1-
3"b100: if(in == 1) begin : : n“state = 3’ b010:
OUt <= 1 - : — 1
- : . end
ghgte <= 3'b010; : : default: begin // don't-care state

default: begin // don’t-care state n_state = 3’ x

state <= 3’ bx; ggg =X

out <= x; d
: end : : engn case :
L GRS R
endmodul e . @l ways@ posedge cik) begin :

state <= n_state; out <= n_out;

RTL-to-Logic Translation (4)

..

B) Logic equation transformation : : if(state == 3'b000 & in == 1 ||
: state == 3" b010 && in == 0)

begi n : n_state[0] = 1;
n_state = 3’ b00O; : else if(state == 3’ bl1l01 |
n_out = O; : state == 3’ b110 ||
if(rst == 0) : state == 3’ bl1ll)
case(state) : n_state[0] = x;
3'b000: 1f(in == 1) n_state = 3 b0O1; ;.elsen state[0] =0 i
3’ b001: i f(| n == 1) n_st ate = 3’ bOlO, goeeee et e JE DR :
3'b010: if(in == 0) n_state = 3" b011l; : if(state == 3'b001 && in == 1 []
el se n_state = 3’ b010; : state == 3'b010 ||
3'b011: if(in == 1) n_state = 3’ bl00; : state == 3'b100 && in == 1)
3’ b100: if(in == 1) begin n_state[1] = 1;
n out = 1; i elseif(state == 3" b101 ||
n_state = 3' b010; : state == 3’ b110 |
end : state == 3’ bll1l)
default: begin // don't-care state : n_state[1] = X;
n state = 3 x; i else n_state[l] = O; :
out = x; A :
end FTf(state =="3"D0011 &k T n " =="1) :
endcase : n_state[2] = 1,
end : else if(state == 3' b101 |
: state == 3" b110 ||

state == 3’ bl11l)
n_state[2] = x;
el se n_state[2] = 0O;

..

..

if(state == 3’ b1l00 && in == 1)
n_out = 1,
else if(state == 3" b101 |
state == 3" b110 ||
state == 3" bl1ll)
n_out =
el se n_out

..

X

TIoToD

Boolean Function Implementation
Using Two-Level Logic

The study of logic synthesis started from two-level logic

Optimized two-level logic is often the starting point for multi-level
logic synthesis.

Several types of two-level logic

» Sum-of-product (1t level : AND, 2nd level : OR)

> NAND-NAND (has the same structure as sum-of-product)
» Product-of-sum (1stlevel : OR, 2nd level : AND)

> NOR-NOR (has the same structure as product-of-sum)

a a) — a j) Yo
b b b
' ¢ DA e D
a b d d
b . -
b b
sum-of-product NAND-NAND C 3 c :D‘f

product-of-sum NOR-NOR
All four circuits implement the same function

Programmable Logic Array

A programmable logic array is a device which can implement
arbitrary Boolean function in sum-of-product form with N inputs, M
outputs, and R products (cubes).

Minimizing the number of products R results in smaller area (N and
M are fixed for a given function)

1%t level NOR-plane 2nd level NOR-plane
... . T
—/WWh _|§7 _|§7 J__I_L[> a+b(=ab)
W TS (& arc-ao
5 SIS
—/\WA : T : b+c(=bc)
SEEIEIEE s
- MA——— — i — a+b(=ab)
s TSR ISR N SN R S AR S ’ f,=ab+ac+bc
pull-up o
resistor & & & fi=abrac

input inverteréé 4& 4& \{ Eoutput inverter

a b C f, f,

1.

2.

3.

4.

Boolean Function Terminologies (1)

Boolean function f with N inputs and M outputs is a mapping
f:{0,1}N—> {0, 1, XM, (X : don’t-care)
If mapping to don’t-care values does not exist, the function is said to
be completely specified. Otherwise it is said to be incompletely
specified.
If M =1, itis called a single-output function. Otherwise it is called a
multiple-output function.
For each output f_ of function f :
ON-set is defined as the set of input values x such that f (x) = 1
OFF-set is defined as the set of input values x such that f_(x) =0
DC-set is defined as the set of input values x such that f_(x) = X
A literal is a Boolean variable or its complement.

A cube is a conjunction of literals (a product term).
A cover is a set of cubes (interpreted as sum-of-product term).

Boolean Function Terminologies (2)

8. A bit vector notation of a cube describes the polarity of each literal
(0 : complemented literal, 1 : uncomplemented literal) for each
variable in the Boolean function. If a variable does not appear in the
cube, it is denoted as ‘-’ (also don’t-care)

EX. X3 X, X, X, — 1010 X3 X, X, — 11- 0
9. A cube is called a k-cube if there are k elements of ‘-’ (don’t-care) in
the bit vector notation.

10. A minterm is a cube that contains all variables in the Boolean function.
Each minterm belongs to either the ON-set, OFF-set or the DC-set of
a particular output of the function. A minterm is a 0-cube.

..
.

if(state == 3 b000 && in == 1 ||
state == 3'b010 && in == 0)

n_state[0] = 1; §
else if(state == 3" bl1l01 || :
state == 3" b110 || :

state == 3’b111)
n state[O] = X

..

function f, gareqo; (state[2] state[1], state[O] in)

Boolean Function Terminologies (3)

11. The input variable space {0, 1}N can be modeled as a binary N-
dimensional hypercube

. Each vertex in the hypercube represents a minterm.

. k-cube is represented by a binary k-dimensional hypercube

. k-dimensional hypercube is sometimes referred to as “binary k-cube”
state[1]

state[2]
0 1101 1111
@ 0 g TN 9/}
In . 1 1
o) 7

’ * DC-set O ON-set
@ OFF-set
O DC-set

function f, gaepo; (State[2], state[1], state[0], in)

12.

Boolean Function Terminologies (4)

Analogy of Boolean algebra to Class calculus (Set Theory)
o logic variable — set

o logic negation — complement set

e logical 1 — universal set

e logical 0 — null set (¢)

o logical AND — set intersection (a-b — an b)

e logical OR — setunion (a+b—> aub)

‘ a ‘) .
/ a-b(anb) a+b(@ub)
universal set

Boolean Function Terminology (4)

13. Partial order and containment

. Partial order of logic variables : f<g«< (iff=1,theng=1)<f.-g="1
> Interpretation in set theory — containment of sets : f— @

. Partial order of logic expression (cubes and covers) :
abc<ab—>abccab
bc<ab+ac—o>bccab+ac
ac+bc<ab+ac+abc—ac+bccab+ac+abc

v Terminologies for set theory (intersection, union, containment) is often

AN

applied to logic expressions.
‘ abc ac: ‘ act—
i 5
abccab bccab+ac ac+t+bccab+ac+abc

14.

15.

16.

Boolean Function Terminology (5)

An implicant for a particular output of a function is a cube which contains
minterms only in the ON-set and DC-set. (In other words, a cube which
does not intersect with the OFF-set)

A prime implicant (or simply, prime) is an implicant that is not contained
by any other implicant, and intersects with the ON-set.

An essential prime implicant (or essential prime) is a prime that contains
one or more minterms which are not contained by other primes.

. Alegal cover for a function is a set of implicants which contains the ON-

set and does not intersect with OFF-set (may intersect with DC-set).

Implicants : abc, abec,
abc, abc, abg,
ab, ab, ac, bc

Primes: ab, ac, bc
Essential primes ;. ab, ac

Legal cover: ab+ ac

Two-Level Logic Optimization

Input : Boolean function representation using
> Truth table or

> Set of cubes in the ON-, OFF- and DC-sets.

v Since the union of the ON-, OFF- and DC-sets is the universal set,
specifying two sets (ex. ON-set and DC-set) is sufficient for
describing a Boolean function.

v For a completely specified function, only the ON-set is needed.
Output : optimized Boolean function in terms of number of cubes (or
sometimes number of literals)

Algorithm :
A) Enumerate all prime implicants of the target function

B) Select a minimum set of prime implicants which are required to
contain the ON-set of the target function.

Preparation : Cube Reduction

For a pair of cubes A and B, if there exists an cube C such that A + B
= C, then A and B are said to be adjacent and are reducible to C.

On the bit-vector representations, adjacency of a pair of implicants
can be determined by comparing elements in each position : if only
one position is different, and if all -’ positions are same, then the
implicant pair is adjacent.

abcd 1 1 1 1] |
reducible
abc 1 1 1 -
abtc 1 1 /0. .1 don't-cares at the same position

a b C 1 1 :‘\ 1/,' i_ ___j/
reducible

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (1)

1 Pri : i t ext ti truth table O-cube table
. rnme implicant extraction (30 fra] x(3: 0] 1]
A) From the truth table, delete minterms in OFF-set. 0000 0 booi i 1T
(O-cube table : contains only minterm implicants) 0001 1 8(1)8% % *
B) k=0. 0010 O 0111 x *
_ 0011 O 1000 1 *
C) Let N be the # of rows in k-cube table. 0100 (1) 1010 1 *
_ : 0101 1100 1 *
If N=0, then terminate. 8%%9 0 ﬂ% % -
o . X
D) for(! O | < N | +JT) 1000 1
for=i+1;J<N;j++) 1001 0 1-cube table
If rows i and j are adjacent, %8%9 (1) X[3:01 fra
. it ©% 1100 1 stesmmmm--
mark these 2 rows with 1101 1 0-01 1
« add areduced cube to (k+1)-cube table 1110 1 0%0% %
e Output part of the reduced cube is 1 if it 11110 10-0 1 *
intersects with the ON-set. Otherwise (if it is %: 98 % .
fully contained in the DC-set), it is x. 110- 1
E) k=k+1.GotoC). 11-0 1~
F) Rows whose output is 1 and without ‘ * " marked 2-cube table
are the prime implicants. X[3:01 fra

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (2)

O-cube table

X[(3:0] fra

P P PR R X PR

1-cube table

X[3:01 fra

*

* ok ok
i
H 1 1

o = O
1 © O

e

2-cube table
X[3:0] frq

identical cubes are
generated here.
(delete the 2"d cube
from the list)

2.

3.

Single-Output 2-Level Logic Minimization Using

Prime implicant table generation

Quine-McCluskey Method (3)

prime implicant

A) Assign ON-set minterms to each row \
B) Assign prime implicants to each column b 0o - 1 1
C) For each minterm row, mark an ‘X' at the b:: 1 % (1) -
column whose prime implicant contains this x(a:o frytl/ 1 1 - O
minterm o001 1 X T
Prime implicant cover extraction 019 1 X XX
containing all ON-set minterm 1010 1 x X
(minimum unate covering problem :NP-complete) 1101 1 X X
: : 1110 1 X
A) Delete dominated prime (column) and
dominating minterm (row)
B) Extract essential primes and delete all ON-set minterm
minterms (rows) which are contained in these
essential primes. T > Techniques to reduce
C) Arbitrary select a prime and delete all minterms the problem complexity

which are contained in this prime. (can be applied in any order)

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (4)

3.A Elimination of dominating minterms

Prime set for a minterm

A set of primes which contain the minterm
Ex: prime set for 0101 is {0-01, 01-1, -101}
Dominating minterm :

On a pair of minterms, if the prime set of one
of the minterm contains that of the other, the
former minterm is said to be the dominating
minterm of the latter.

Prime set is the set of candidate for
covering the particular minterm.
Dominating minterms can be eliminated
from the problem since the prime which
covers some dominated minterm always
covers the corresponding dominating
minterm.

O 0 - 1 1

- 1 1 1 -

O - 0 0 -
x(3:0 frgp 11 1 - O
o001 1 X .
iooo 1 7 X
1010 1 v X
1101 1 X X
1110 1 X

« Row 0101 is the
dominating minterm of row
0001.

* Row 1100 isthe
dominating minterm of rows
1000, 1010 and 1110.

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (5)

3.A Elimination of dominated primes

Minterm set for a prime

A set of minterms which are contained by the
prime

Ex: minterm set for 0-01 is {0001, 0101}
Dominated prime :

On a pair of primes, if the minterm set of one
of the prime contains that of the other, the
latter prime is said to be the dominated prime
of the former.

Dominated primes can be eliminated
from the problem since the entire
minterm set of a dominated prime is

always covered by the dominating prime.

o 0 - 1 1

- 1 1 1 -

O {f 0 0 -
x(3:00 fryp 21 1 - O
o001 1 X |
1000 1 | ° X
1010 1 v X
1101 1 X X
1110 1 X

e Column 01- 1 is the

dominated prime of column
0-01 and - 101.

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (6)

essential primes

o0 - 1 1 0N - 171 -1
-1 1 1 - -1 1) -y 1 1
O { 0 0 - 00 0 - 0O O
X301 frig 11 1 - O x(s:01 fryg:1 1 -7 0 Xr3:01 frag 1 -
0001 1 X I:t 0001 1 : X | '; : I:t 1101 1 X X
0161+—+% K—K—X 1000 1 ;’ vX
1000 1 X 1010 1 ' VX
1010 1 X 1101 1 PXOXyY
+100—1% K—X 1110 1 ' VX
1101 1 X X
1110 1 X

3.B Extraction of essential primes

» An essential prime implicant (or essential prime) is a prime
that has at least one ON-set minterm which are not
contained in any other primes. Such minterms are called
essential minterms.

Single-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (7)

select an arbitrary prime ~ No minterm left to cover 0 ({ 1 % 1
TERMINATE i0f - i0f 0 i-i

- xgs:op fra i1 1 i1: - [0

1 ------------:---a--:---a--i

141 0001 1 ix: : P

010 0 0101 1 X X ixi

o0 (1 11 SECRICRR R I
11011 % X 1101 1 xi X i
1110 1 : P X

3.C Arbitrary selection of remaining primes

. If 3.A (elimination of dominating minterms and dominated primes)
and 3.B (essential prime extraction) cannot further be applied, select
an arbitrary remaining prime and delete the rows (minterms) which is
contained in this prime. Try 3.A and 3.B again.

. If all minterms have been covered, then TERMINATE.

. In order to obtain an optimal cover, do all combinations of the
arbitrary prime selection.

Multiple-Output 2-Level Logic Minimization
Using Quine-McCluskey Method (1)

1. Prime Implicant Extraction
A) Extract the prime implicants for each output seperately.

truth table O-cube table 1-cube table 2-cube table
X[3:0] fr1:0] X[3:0] fra X[3:01 fra X[3:01 fra
0000 00 @ 0001 1 * @ 0-01 1 @ 1--0 1
0001 10 0101 1 * 01-1 1
0010 00 0111 x * -101 1
0011 Ox 1000 1 * 10-0 1 *
0100 Ox 1010 1 * 1-00 1 *
0101 10 1100 1 * 1-10 1 *
0110 01 1101 1 * 110- 1
0111 xO 1110 1 * 11-0 1 *
1000 11

1001 OO0

1010 11 0-cube table 1-cube table
1011 01

1100 1x X[3:01 froj X[3:0] fo]

19 1 o031 e T, -
1111 00 0100 x * <« | not a prime implicant
9%%8 % * %958 % because the output is ‘X’
* -
oo 1 o
1100 x *
1101 1 *

Multiple-Output 2-Level Logic Minimization
Using Quine-McCluskey Method (2)

2. Prime Implicant List Merging
< mt prime implicant list corresponds to the prime
implicant list for the mt output
< mth outputs in mth prime implicant list are all 1s by
definition
A) For each prime p in the all prime implicant lists

« m" output is 1 if there exists a prime in the mt"
prime implicant list which contains p.

« mt output is 0 otherwise.

prime implicant list
X[3:0] f[1:0]

» This allows implicants other than the primes to be
included in the candidate for minterm covering.

these are identical primes
delete one of them from the list

Multiple-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (3)

Prime implicant table 0211?08t
I O - 0 0 - 1 1 0O 1
generation x(zo frzoyl 14 1 - 0 0 1 0 0 -
A) Assign ON-set minterms to each o001 1- x | | |
row for each output %88 %Z X XX X X X
: . . . 1010 1- X X
B) Assign prime implicants to each 1100 1- X X X
column 1 I Xy
C) For each minterm row, 0110 -1 | | | | x
- 1000 -1 X X
. mark an ‘|’ at the column whose 1010 -1 X X
output part of the corresponding %%% :% X X X
prime implicant is O for the
corresponding output of this
minterm
. Otherwise, mark an ‘X’ at the These primes .cannot be gsed for covering
column whose prime implicant because they intersect with the OFF-set of

contains this minterm the corresponding output

Multiple-Output 2-Level Logic Minimization Using
Quine-McCluskey Method (4)

4. Prime implicant cover extraction

containing all ON-set minterms 0 411011
(same as the single-output case) 00 0 - 1 0
X(3:01 frzo0 1 1 - 0 O 0
0001 1- X o |
0 - 1 0 4 1 11 1o —1- X
1 1 - 1 0 0 - 0 1110 1- X |
0 000 - 11 - 01 2 giie i T YT
. . — : 0110 -1 X
xggop fruop b4 1 - 0.0 1909 - 1000 -1 ‘ i ‘ X X
0001 1- X 1910—1 X
6101 —1—X X 101 -1 ‘ ’ X
10001 £ L=)
10101~ X A
i = % " B ——
1101 1- X X L mmmead
eSS AU AN IO 103i0ii-ii1ii-fil
0110 -1 X x[3:0] friopilii-£:0::0::08:-1
1000 -1 X X PRl 0 & S & A b b A
0001 1- iXii i oiilii i)
1101 -1 SN SN
PiXE P

. . . .

Improving Quine-McCluskey Method
(Espresso-EXACT, UC Berkeley)

e Problems

— Need to specify all minterms

— Need a large number of cube reducibility tests.
» Only a small portion will pass the test to generate reduced cubes.
» ldentical primes may be generated multiple times.

— Size of the prime implicant table is large since each row
corresponds to minterms

e Improvements

— Extract all the prime implicants directly without enumerating
minterms.

— Generate a reduced prime implicant table and solve the minimum
covering problem on this smaller table.

Direct Extraction of Prime Implicants
(Preperation 1)

Corollary 1 : Let P be a cover for a completely specified function f.
For any implicant c of f, there exists ¢’ € P such that c — ¢’ if and only
if P includes all primes of f.

Theorem 1: Let P and P, be the covers for completely specified
functions f, and g, respectively. And let Py, be P; - P, that is expanded
in sum-of-product form. If P, and P include all primes for f and g,
respectively, then Py, includes all primes of function f - g.

Proof :

> By definition, Py, is a cover whose cube elements are the non-zero
conjunctions of a cube in P; and cube in Pg;

Pi= {G- ¢yl cre Py, cye Py, G-y 0}
> Any implicant of the function f - g is also an implicant for both fand g (if f- g
IS true, then both f and g must be true as well). Thus for any implicant c of f
- g, there exists ¢; € Pyand ¢, e P, such that c c ¢, and c < ¢, Therefore ¢ <

Direct Extraction of Prime Implicants
(Preperation 2)

Theorem 2: Let P be a cover for a completely specified function f,
and P’ be the cover for the complement of f (denoted as f) which is
obtained by applying De-Morgan’s Law to P and then expanding it to
sum-of-product form. P’ includes all primes of f.

(Let us call this the Negate-And-Expand Method)

Proof :
LetP=c,+ c, + ...+ c,(c is a cube)
By De-Morgan’s Law : P=c,+ ¢, + ...+ C,=Cy- C," ... C, - (1)
A complement of a cube becomes a cover composed of single-
literal cubes. Each single-literal cube is the prime of this cover.

EX. XX % =X+ X + %

Since each term in eq(1) becomes a cover composed of primes
for that cover, expanding these terms into sum-of-product form

results in a cover composed of all primes of f. (according to
Theorem 1)

Negate-And-Expand Method

.1 : 8%_0_
xigol T | s 0 01-- i i10-
— o 10 - 10- ¢
-0-1 1 : :AND
) — 10-- - -1-1 -1-1¢ S|mpI|fy
1-10 1 YAl -
o01- 1 T i--0- 0--0 t- : S :
01 TN oo .00 501-o; 01
AN i e, : 0-00F % 710- _
\ -1-- 1-- i 100 - 1- 1% ressesesiieny guessessiione
--0- i--0- i i--00: i2.2.00; :110-: :0000:
n a Terrerrarnanad ; R A I AND 11 1-—!1100
cubes X 1--- 1--- 1--- P :1-00{AND:1- 00
-0-- -0-- -0-- 0-:] =..:.99.9.:/'s..'..9.99.5
0-- - 0-- - 0-- - 0-- - 0-- -
\/
Single Cube Containment Minimality
. . . 01_ -
For each cube in the list, if some 9%8: * 7 delete
other cube contains it, then delete -10-
this cube from the list. RT3
Ex: 01-0

* ok * X

01- - contains 010- (delete 010-) 9'188
- 1- 1 contains - 101 (delete - 101) --00

Direct Extraction of Prime Implicants for

Completely Specified Functions

> By applying Negate-And-Expand twice on a cover for a completely
specified function f, the obtained cover becomes the entire set of
primes for f .
EX. T =000+ X Xy X5+ Xy X+ X Xgt X Xg
0- o1
1- _ 1 simplify
x[s:0 f —*| Negate 1—* 1088 — 011-1 01--
truth table C0-1 1 And \ AND % . oL
x[3:0] f <->< 16%0 % Expand negate -1 o
0000 bl- _ 1 (1st time) cubes - - 11
uos 1011 o
o - —~ -
0101 Negate-And-Expand
0111 (2" time)

H

o

o

o
PRPRORRRORRPRRPRRRRO

Direct Extraction of Prime Implicants for
Incompletely Specified Functions

For an incompletely specified function f , apply the Negate-And-
Expand operations twice on the cover containing both the ON-set
and DC-set. The obtained cover includes all primes of f and
possibly other implicants which do not intersect with the ON-set.

(DC-implicants)

X[3:0] f
truth table 101(1) % | ON-set
X[30] f ‘Xll _01_ X ': '-_‘
""""" 01-- X~ DC-set ‘entire prime
0000 0 .
0001 1 1--1 X D i DC-set
0010 x .‘... Set Q .".
001l 1 Negate-And-Expand D
0101 | @stime)
0110 . T 1-
0111 x 1- 00 > 011 > }1
1000 @ -000 | Negate-And-Expand | .-21 Eliminate
1010 1 E— nd 1 .
1010 1 R=FUD (2nd time) O=FuD DC-implicants Q
1100 © : . (Prime set)
1101 x (OFF-set cover) (Prime set + DC-implicants)
1110 1
1111 x

Function Negation Methods (1)

Computation time of Negate-And-Expand operation can become very
long when there are a large degree of redundancy in the cover
representation of the function (i.e. a large number of small cubes).

While the 2" negation requires Negate-And-Expand operation in
order to obtain the entire prime set, the obtained cover after the 15t
negation (OFF-set cover) does not have to be the entire prime set for
the negated function.

Shannon Expansion method can be used for the 1st negation to obtain
the OFF-set cover.

The cover obtained by Shannon Expansion does not include all
primes for the negated function, but its redundancy is relatively low.
Also, the computational complexity is significantly lower than Negate-
And-Expand Method.

Shannon Expansion

f, . cofactor of f with respect to factor x;
fo =F (%0 s Xigs 1_,)&_1,)_(H)_ fe =T (s s X0 0 Xi_g) Xg)

Ex:f=abc+acd+bcd
f.=bc+cd+bcdf,=bcdf . =d+bd

Shannon expansion : f=xf, + xf;

Shannon expansion negation : f= xf, + X f

Recursive Shannon expansion negation :

Ex:f=abc+abc+bc

f=af +af,=a(bc+bc+bc)+a(bc)

f.=Dbf, +bfg=b()+b(c+c)=bc

f.=bfy+bf=b(0)+b(c)=b+bc

f=af +af;=a(bc)+a(b+bc)=abc+ab+abc

Function Negation by Shannon Expansion (1)

factor’s
bit-vector

factor \

To choose the cofactor, select the
variable whose corresponding
column has the least number of ‘-’
as the cofactor.

> The set of factors whose leaf cofactor 0000
is 0 is equivalent to the OFF-set cover. 1- 00

> The set of factors whose leaf cofactor
is 1 is equivalent to the ON-set cover.

: If the cofactor cover

: includes a universal

cube (all *-’), negation
: of this cofactor is 0.

ey | the cofactor cover
: : | is a null set,
negation of this
cofactor is 1.

Shannon Expansion on
Multiple-Output Function

fi = XX + XX X3 + XpXg f

— v o — x[3:0] fri:o)
fo = XX X X5+ XX + XpXg AR
X[3:0] fra x(3:01 frop 1-10 10

OFF-set cover for f; OFF-set cover for f,

Negate-And-Expand Method for
Multiple-Output Functions

11-1
1- 00
00-0

N

11-0
- 000

\\‘__

OFF-set cover

0--- 0--- 01- -
-0-- T 0-1- T -01- T*0--1
---0 0--1 -0-1 101-
R P I B I B
-1- -0-1 1--- /—0-1
--1 0--0 -1-- 1- 10
--10 ﬂl -110
1_\ 1___
1™ T1--
---1
- -- 01-- 01--
0-- + 0-1- 0- 1-
---1 0--1 + - 01-
1 o | L
i 2
--1 --11
--1

A 4

1-10
7110

\

 RRRRRR

1 1 1
o el ml 1 1 1 1 1 1

merge
tables

01--
0--1
101-
-0-1
1-10
-110
0-1-
-01-
---1

Reduced Prime Implicant Table

Generation (1)
Essential prime setE, ={c|ce Q,F g:/Q —C}:

> c is an essential prime if the prime set excluding ¢ (“Q —c” denotes the

set Q whose element c is eliminated) does not contain the ON-set cover
F. (therefore c is essential for covering F)

» Checking F nc & Q-c(instead of F £Q—c¢) is sufficient.
Containment check

» AcB®ccBfor Vce A (A B:cover, c: cube)

v" In order for a cover to be contained in another (partial order), all
cube included in the former needs to be contained in the latter.

> ccBe B.=1 (B,: cofactor of B with respect to cube c)
> B=1eB,=1 A B,=1 (tautology check by recursion)

R | e Bex_
2100 || -0-0 [A 1- .| =71~ | = tautology
1-10 : 14 0- --0-
100- /O* - - = C - B
01-1 factoring L= _ B, —
00- - with ¢ ‘\ faCtO”ng —===Z= = tautology

X with x -

Recal ccB=c-B=—cC

v
v
v

v
v

Reduced Prime Implicant Table
Generation (2)

Relatively redundant prime set R = Q—-E,
Totally redundant prime set R ={c|ce R ,ccE}
Partially redundant prime set R = R — R,

On obtaining a minimal prime set which covers the ON-set F
E, is always included
R, is never included

R, is the portion of the total prime set which is considered in the minimum
covering problem.

Each element of R, corresponds to the columns of the reduced prime
implicant table.

Minterm set Mp which needs to be covered (rows of the reduced
prime implicant table)

M= E NR,

MNE=g¢(me M)

Reduced Prime Implicant Table
Generation (3)

Computation of minterm set M,, (actually, each row may
represent a collection of minterms)

» For each cube c ¢ Rp, consider the set R = Rp—c.

» Recursively divide cinto smaller cubes at its don’t-care variables
« Ex.0-1- —»(001-,011-) — ((0010,0011),(0110,0111))

» On each divided cubes c’:
. If ¢ < E,, then ¢ is not included in M,

. If there exists a cube d € R such that ¢’ — d, then all minterms
included in ¢’ is covered by the prime d. If so, add ¢’ to the row and
mark ‘X’ to all columns which contain ¢'. (Note that there may be
several cubes which contain c’)

If one of the two conditions above is satisfied, then ¢’ does not
have to be divided anymore.

Reduced Prime Implicant Table

(@)
1

Generation (4)

011-

= -01- >

101-

-101 —» 0101

1-01 —» 1001 <

c 01--

c 10--

< 01--

1101

Reduced Prime Implicant Table
Generation (5)

ON-set cover _ Essential Minterms
(initial) OFF-set cover Prime set cover prime set uncovered by E,
F R Q E M,
- 100 11-1 100- 100-
100- 000- 010- 0100
01-1 0110 -100 0101
001- 01-1 0111
0-11 001- F%_
-010 —====
. . . 0-11 010-
Prime implicant table -100
e e, /' 8(1)11
iy 9 08 o0 Partially -010 Reduced prime implicant table
0ii-:0 0O - 1 1 1 redundant 0-11
mn -:1:0: - 0 1 - 0 1 prime set — :0: - i0i:0: - O
D B R R R IR EEL R=¢ 1: 1 :11i0: 0 -
0010 X X 0: 0 i-ii1i 1 1
0011 X X M P00 i1iici0 1
0100 X X R (5 gt b S B
0101 X 0010 P F iXE X
0111 X X 0011 PP X X
0100 X: X i
0101 X: i X
0111 X X

...................

............

Reduced Prime Implicant Table Generation (6)

F R Q B
1001 00- 1- 101- - 101- - Mo
1010- » 00- -0 » 1-11- M 11--1 " Til10
11--1 100- - 1-1-1 011- - 1
011-0 2001- 11--1 0--01
1-11- 0-01- 011--
00-01 11- 00 S111- R,
S11-1 220-0 S11°1 ==
1701 1-11- .
0--01 T111-
....... Prime implicant table -~ 101
1i1 1 i26151 01 - Q- 1-1-1
P - oo _ : : -11-1
UL RO IS £ L SR £ B -2101

Reduced prime implicant table

FCLELY

1i -
-1 1
1k
Moo | L]
11110 | iXi X

Summary on
Two-Level Logic Optimization

Two-level logic optimization is first proposed by
Quine and McCluskey, and since then has been
studied widely.

Based on Quine-McCluskey method, improvements
have been made in prime extraction, prime table
generation, covering techniques to reduce the
computation time.

Even though the computational complexity is NP-
complete (due to prime covering problem), near-
optimal solution can be obtained in short time.

There are heuristic algorithms which solve the
prime extraction/prime covering problems iteratively.

	VLSI System Design�Part II : Logic Synthesis (1)�Oct.2006 - Feb.2007�
	Logic Synthesis
	Logic Synthesis Flow
	RTL-to-Logic Translation (1)
	RTL-to-Logic Translation (2)
	RTL-to-Logic Translation (3)
	RTL-to-Logic Translation (4)
	Boolean Function Implementation �Using Two-Level Logic
	Programmable Logic Array
	Boolean Function Terminologies (1)
	Boolean Function Terminologies (2)
	Boolean Function Terminologies (3)
	Boolean Function Terminologies (4)
	Boolean Function Terminology (4)
	Boolean Function Terminology (5)
	Two-Level Logic Optimization
	Preparation : Cube Reduction
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (5)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (6)
	Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (7)
	Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)
	Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)
	Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)
	Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)
	Improving Quine-McCluskey Method �(Espresso-EXACT, UC Berkeley)
	Direct Extraction of Prime Implicants�(Preperation 1)
	Direct Extraction of Prime Implicants�(Preperation 2)
	Negate-And-Expand Method
	Direct Extraction of Prime Implicants for Completely Specified Functions
	Direct Extraction of Prime Implicants for Incompletely Specified Functions
	Function Negation Methods (1)
	Shannon Expansion
	Function Negation by Shannon Expansion (1)
	Shannon Expansion on �Multiple-Output Function
	Negate-And-Expand Method for �Multiple-Output Functions
	Reduced Prime Implicant Table Generation (1)
	Reduced Prime Implicant Table Generation (2)
	Reduced Prime Implicant Table Generation (3)
	Reduced Prime Implicant Table Generation (4)
	Reduced Prime Implicant Table Generation (5)
	Reduced Prime Implicant Table Generation (6)
	Summary on �Two-Level Logic Optimization

