

# **VLSI System Design**

## **Part II : Logic Synthesis (1)**

**Oct.2006 - Feb.2007**

**Lecturer : Tsuyoshi Isshiki**

Dept. Communications and Integrated Systems,  
Tokyo Institute of Technology

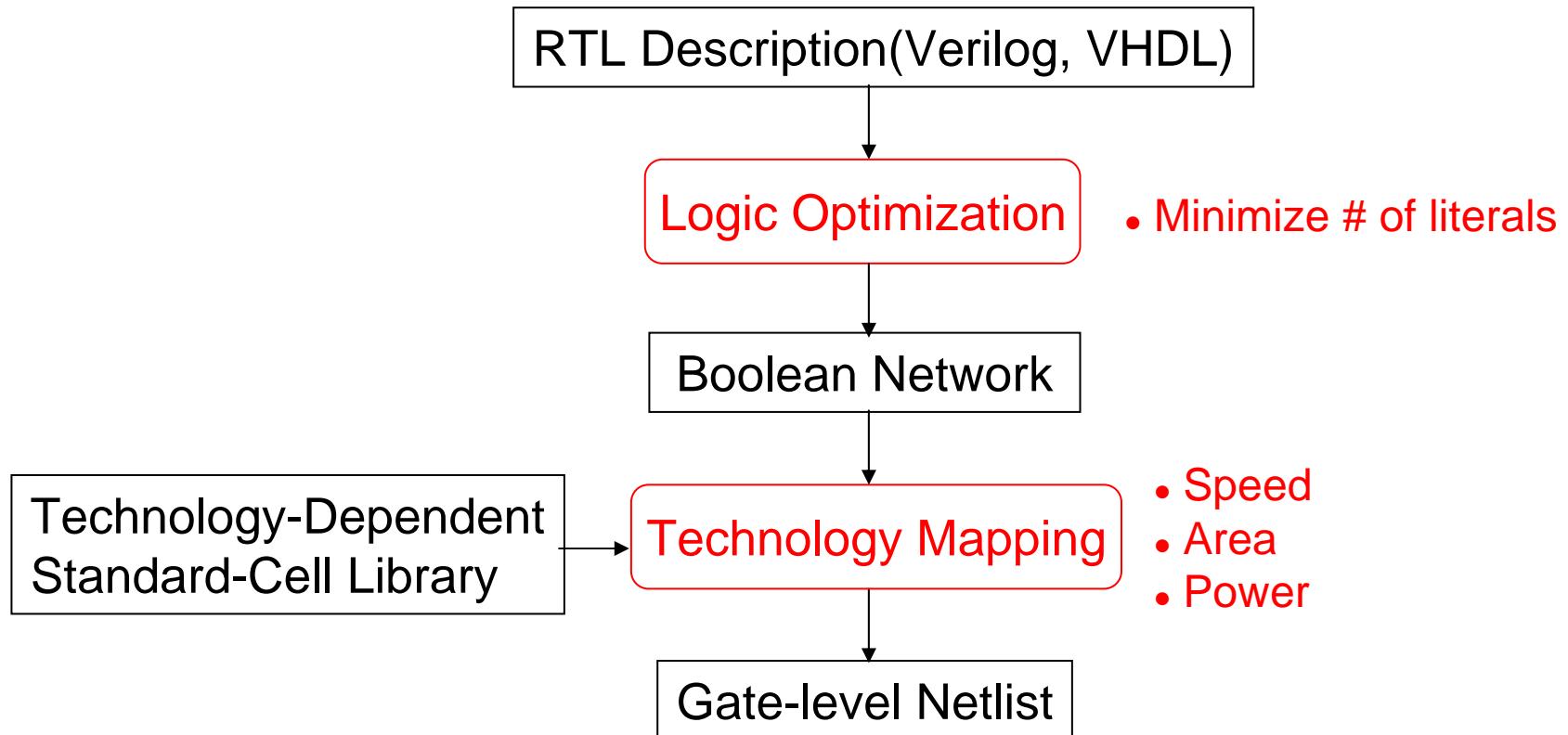
[isshiki@vlsi.ss.titech.ac.jp](mailto:isshiki@vlsi.ss.titech.ac.jp)

<http://www.vlsi.ss.titech.ac.jp/~isshiki/VLSISystemDesign/top.html>

# Logic Synthesis

1. Logic synthesis types
  - a. Combinational logic synthesis
    - Two-level logic
    - Multi-level logic
  - b. Sequential logic (finite state machine) synthesis
    - State minimization
    - State encoding
2. Currently available logic synthesis CAD tool
  - Mainly two-level/multi-level logic synthesis
  - State code optimization for sequential logic

# Logic Synthesis Flow



# RTL-to-Logic Translation (1)

## A) *Combinational logic extraction :*

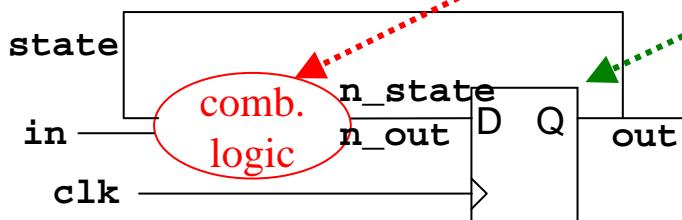
RTL description is partitioned into combinational logic part and storage elements (DFF, latches)

```
module str1101(clk, in, out);
  input clk, in;
  output out;
  reg [1:0] state;
  reg out;
  always@(posedge clk) begin
    state <= 2'b00;
    out <= 0;
    case(state)
      2'b00: if(in == 1) state <= 2'b01;
      2'b01: if(in == 1) state <= 2'b10;
      2'b10: if(in == 0) state <= 2'b11;
      else state <= 2'b10;
      2'b11: if(in == 1) begin
        out <= 1;
        state <= 2'b01;
      end
    endcase
  end
endmodule
```

```
reg [1:0] n_state;
reg n_out;
```

```
always@(in or state) begin
  n_state = 2'b00;
  n_out = 0;
  case(state)
    2'b00: if(in == 1) n_state = 2'b01;
    2'b01: if(in == 1) n_state = 2'b10;
    2'b10: if(in == 0) n_state = 2'b11;
    else n_state = 2'b10;
    2'b11: if(in == 1) begin
      n_out = 1;
      n_state = 2'b01;
    end
  endcase
end
```

```
always@(posedge clk) begin
  state <= n_state;
  out <= n_out;
end
```

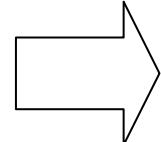


# RTL-to-Logic Translation (2)

## B) *Logic equation transformation :*

For each output variable, compute the conditions in which the value evaluates as 1, 0, and don't-care (DC).

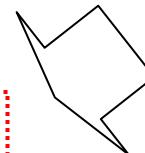
```
begin
  n_state = 2'b00;
  n_out = 0;
  case(state)
    2'b00: if(in == 1) n_state = 2'b01;
    2'b01: if(in == 1) n_state = 2'b10;
    2'b10: if(in == 0) n_state = 2'b11;
    else n_state = 2'b10;
    2'b11: if(in == 1) begin
      n_out = 1;
      n_state = 2'b01;
    end
  endcase
end
```



```
if(state == 2'b00 && in == 1 ||
  state == 2'b10 && in == 0 ||
  state == 2'b11 && in == 1)
  n_state[0] = 1;
else n_state[0] = 0;

if(state == 2'b01 && in == 1 ||
  state == 2'b10)
  n_state[1] = 1;
else n_state[1] = 0;

if(state == 2'b11 && in == 1)
  n_out = 1;
else n_out = 0;
```



```
n_state[0] =
  (~state[0] & ~state[1] & in ||
  ~state[0] & state[1] & ~in ||
  state[0] & state[1] & in);

n_state[1] =
  (state[0] & ~state[1] & in ||
  ~state[0] & state[1]);

n_out = state[0] & state[1] & in);
```

# RTL-to-Logic Translation (3)

## A) *Combinational logic extraction*

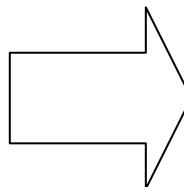
```
module str11011(clk, rst, in, out);
  input clk, in;
  output out;
  reg [2:0] state;
  reg out;
  always@(posedge clk) begin
    state <= 3'b000;
    out <= 0;
    if(rst == 0)
      case(state)
        3'b000: if(in == 1) state <= 3'b001;
        3'b001: if(in == 1) state <= 3'b010;
        3'b010: if(in == 0) state <= 3'b011;
        else state <= 3'b010;
        3'b011: if(in == 1) state <= 3'b100;
        3'b100: if(in == 1) begin
          out <= 1;
          state <= 3'b010;
        end
      default: begin // don't-care state
        state <= 3'bx;
        out <= x;
      end
    endcase
  endmodule
```

```
.....  
reg [2:0] n_state;  
reg n_out;  
always@(in or rst or state) begin  
  n_state = 3'b000;  
  n_out = 0;  
  if(rst == 0)  
    case(state)  
      3'b000: if(in == 1) n_state = 3'b001;  
      3'b001: if(in == 1) n_state = 3'b010;  
      3'b010: if(in == 0) n_state = 3'b011;  
      else n_state = 3'b010;  
      3'b011: if(in == 1) n_state = 3'b100;  
      3'b100: if(in == 1) begin  
        n_out = 1;  
        n_state = 3'b010;  
      end  
    default: begin // don't-care state  
      n_state = 3'x;  
      out = x;  
    end  
  endcase  
end  
always@(posedge clk) begin  
  state <= n_state; out <= n_out;  
end  
.....
```

# RTL-to-Logic Translation (4)

## B) Logic equation transformation :

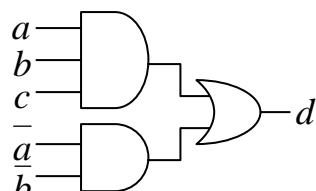
```
begin
  n_state = 3'b000;
  n_out = 0;
  if(rst == 0)
    case(state)
      3'b000: if(in == 1) n_state = 3'b001;
      3'b001: if(in == 1) n_state = 3'b010;
      3'b010: if(in == 0) n_state = 3'b011;
                 else n_state = 3'b010;
      3'b011: if(in == 1) n_state = 3'b100;
      3'b100: if(in == 1) begin
                 n_out = 1;
                 n_state = 3'b010;
                 end
    default: begin // don't-care state
      n_state = 3'x;
      out = x;
      end
  endcase
end
```



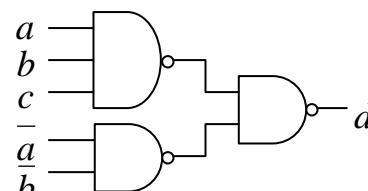
```
if(state == 3'b000 && in == 1 ||  
    state == 3'b010 && in == 0)  
  n_state[0] = 1;  
else if(state == 3'b101 ||  
    state == 3'b110 ||  
    state == 3'b111)  
  n_state[0] = x;  
else n_state[0] = 0;  
  
if(state == 3'b001 && in == 1 ||  
    state == 3'b010 ||  
    state == 3'b100 && in == 1)  
  n_state[1] = 1;  
else if(state == 3'b101 ||  
    state == 3'b110 ||  
    state == 3'b111)  
  n_state[1] = x;  
else n_state[1] = 0;  
  
if(state == 3'b011 && in == 1)  
  n_state[2] = 1;  
else if(state == 3'b101 ||  
    state == 3'b110 ||  
    state == 3'b111)  
  n_state[2] = x;  
else n_state[2] = 0;  
  
if(state == 3'b100 && in == 1)  
  n_out = 1;  
else if(state == 3'b101 ||  
    state == 3'b110 ||  
    state == 3'b111)  
  n_out = x;  
else n_out = 0;
```

# Boolean Function Implementation Using Two-Level Logic

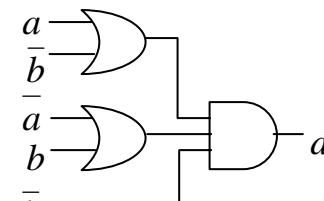
- The study of logic synthesis started from two-level logic
- Optimized two-level logic is often the starting point for multi-level logic synthesis.
- Several types of two-level logic
  - **Sum-of-product** (1<sup>st</sup> level : AND, 2<sup>nd</sup> level : OR)
  - **NAND-NAND** (has the same structure as sum-of-product)
  - **Product-of-sum** (1<sup>st</sup> level : OR, 2<sup>nd</sup> level : AND)
  - **NOR-NOR** (has the same structure as product-of-sum)



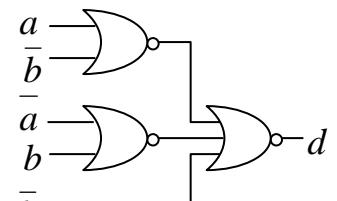
sum-of-product



NAND-NAND



product-of-sum

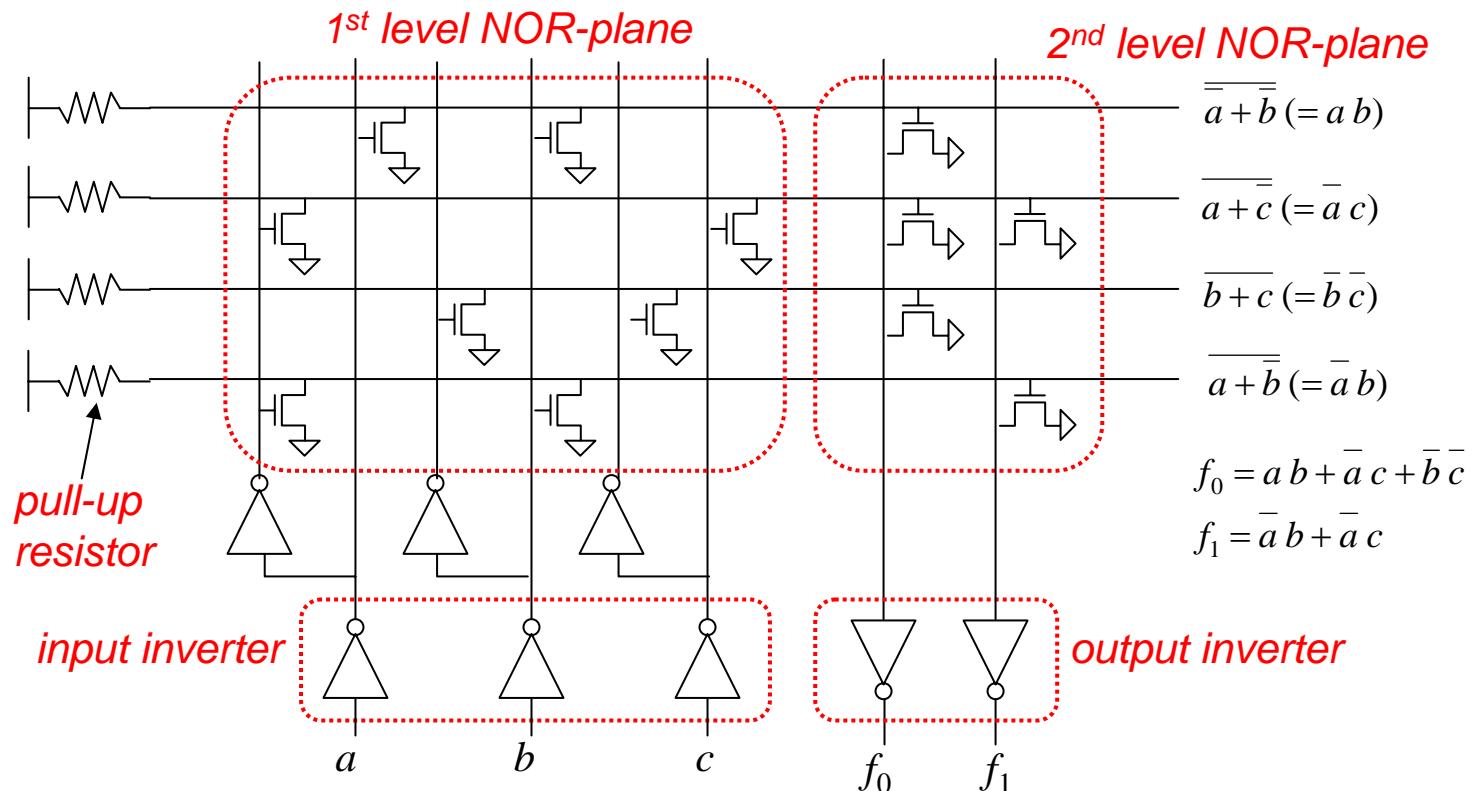


NOR-NOR

*All four circuits implement the same function*

# Programmable Logic Array

- A programmable logic array is a device which can implement arbitrary Boolean function in sum-of-product form with  $N$  inputs,  $M$  outputs, and  $R$  products (cubes).
- Minimizing the number of products  $R$  results in smaller area ( $N$  and  $M$  are fixed for a given function)



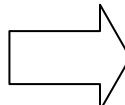
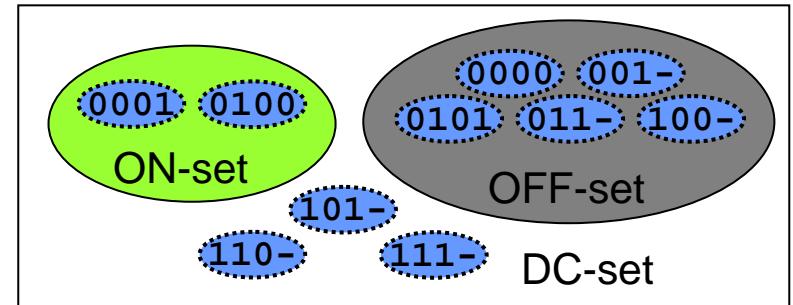
# Boolean Function Terminologies (1)

1. Boolean function  $f$  with  $N$  inputs and  $M$  outputs is a mapping  $f: \{0, 1\}^N \rightarrow \{0, 1, X\}^M$ . ( $X$  : don't-care)
2. If mapping to don't-care values does not exist, the function is said to be *completely specified*. Otherwise it is said to be *incompletely specified*.
3. If  $M = 1$ , it is called a *single-output function*. Otherwise it is called a *multiple-output function*.
4. For each output  $f_m$  of function  $f$ :
  - *ON-set* is defined as the set of input values  $x$  such that  $f_m(x) = 1$
  - *OFF-set* is defined as the set of input values  $x$  such that  $f_m(x) = 0$
  - *DC-set* is defined as the set of input values  $x$  such that  $f_m(x) = X$
5. A *literal* is a Boolean variable or its complement.
6. A *cube* is a conjunction of literals (a product term).
7. A *cover* is a set of cubes (interpreted as sum-of-product term).

# Boolean Function Terminologies (2)

8. A *bit vector notation* of a cube describes the polarity of each literal (0 : complemented literal, 1 : uncomplemented literal) for each variable in the Boolean function. If a variable does not appear in the cube, it is denoted as '-' (also don't-care)  
Ex.  $x_3 \bar{x}_2 x_1 \bar{x}_0 \rightarrow 1010$        $x_3 x_2 \bar{x}_0 \rightarrow 11-0$
9. A cube is called a *k-cube* if there are  $k$  elements of '-' (don't-care) in the bit vector notation.
10. A *minterm* is a cube that contains all variables in the Boolean function. Each minterm belongs to either the ON-set, OFF-set or the DC-set of a particular output of the function. A minterm is a 0-cube.

```
if(state == 3'b000 && in == 1 ||
  state == 3'b010 && in == 0)
  n_state[0] = 1;
else if(state == 3'b101 ||
  state == 3'b110 ||
  state == 3'b111)
  n_state[0] = x;
else n_state[0] = 0;
```

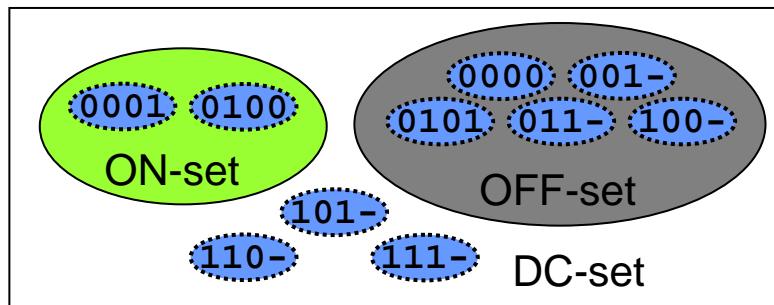


```
function f_n_state[0] (state[2], state[1], state[0], in)
```

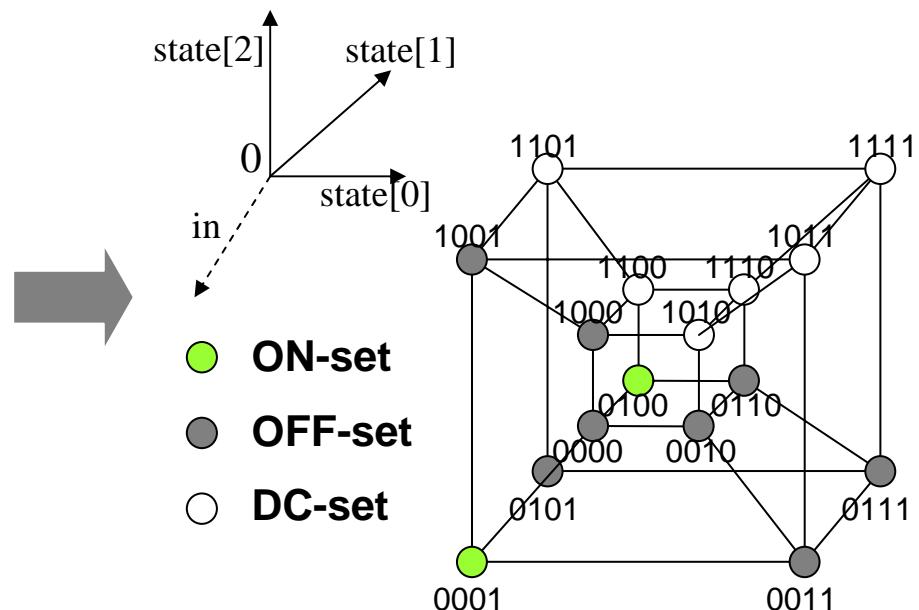
# Boolean Function Terminologies (3)

11. The input variable space  $\{0, 1\}^N$  can be modeled as a **binary  $N$ -dimensional hypercube**

- Each vertex in the hypercube represents a minterm.
- $k$ -cube is represented by a binary  $k$ -dimensional hypercube
- $k$ -dimensional hypercube is sometimes referred to as “binary  $k$ -cube”



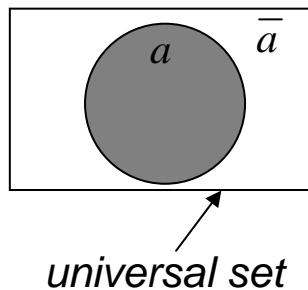
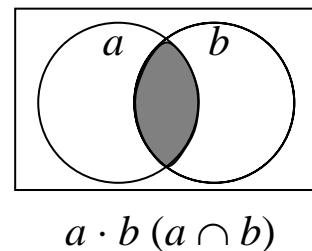
function  $f_{n\_state[0]}$  ( $state[2]$ ,  $state[1]$ ,  $state[0]$ ,  $in$ )



# Boolean Function Terminologies (4)

## 12. Analogy of Boolean algebra to Class calculus (*Set Theory*)

- logic variable  $\rightarrow$  set
- logic negation  $\rightarrow$  complement set
- logical 1  $\rightarrow$  universal set
- logical 0  $\rightarrow$  null set ( $\phi$ )
- logical AND  $\rightarrow$  set intersection ( $a \cdot b \rightarrow a \cap b$ )
- logical OR  $\rightarrow$  set union ( $a + b \rightarrow a \cup b$ )



# Boolean Function Terminology (4)

## 13. Partial order and containment

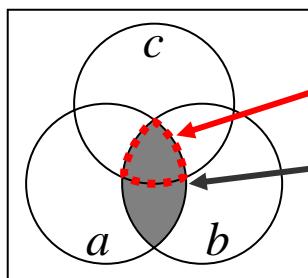
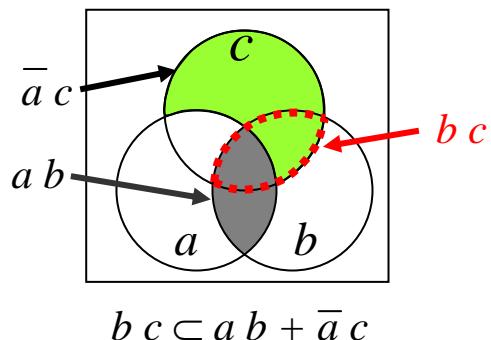
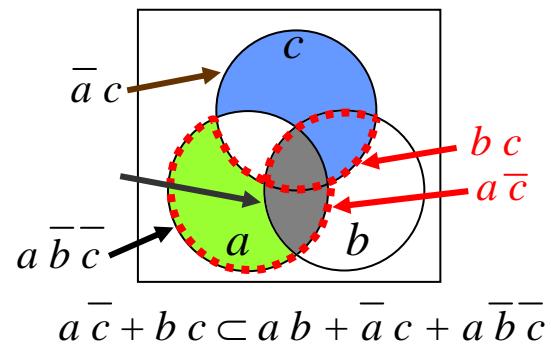
- Partial order of logic variables :  $f \leq g \Leftrightarrow (\text{if } f = 1, \text{ then } g = 1) \Leftrightarrow f \cdot g = f$ 
  - Interpretation in set theory → containment of sets :  $f \subseteq g$
- Partial order of logic expression (cubes and covers) :

$$a b c \leq a b \rightarrow a b c \subseteq a b$$

$$b c \leq a b + \bar{a} c \rightarrow b c \subseteq a b + \bar{a} c$$

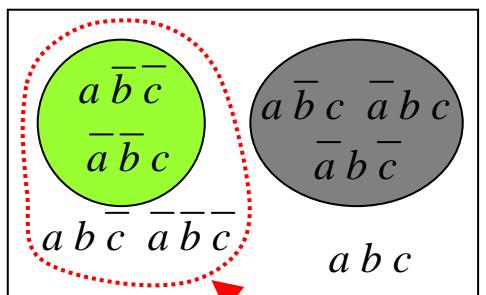
$$a \bar{c} + b c \leq a b + \bar{a} c + a \bar{b} \bar{c} \rightarrow a \bar{c} + b c \subseteq a b + \bar{a} c + a \bar{b} \bar{c}$$

- ✓ *Terminologies for set theory (intersection, union, containment) is often applied to logic expressions.*

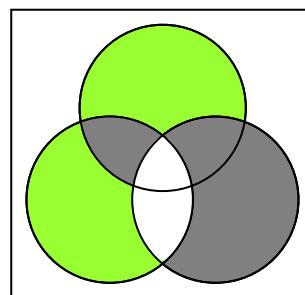


# Boolean Function Terminology (5)

14. An *implicant* for a particular output of a function is a cube which contains minterms only in the ON-set and DC-set. (*In other words, a cube which does not intersect with the OFF-set*)
15. A *prime implicant* (or simply, *prime*) is an implicant that is not contained by any other implicant, and intersects with the ON-set.
16. An *essential prime implicant* (or *essential prime*) is a prime that contains one or more minterms which are not contained by other primes.
17. A *legal cover* for a function is a set of implicants which contains the ON-set and does not intersect with OFF-set (may intersect with DC-set).



ON-set  
 DC-set  
 OFF-set



Implicants :  $a\bar{b}\bar{c}$ ,  $\bar{a}\bar{b}c$ ,  
 $a\bar{b}c$ ,  $a\bar{b}\bar{c}$ ,  $\bar{a}\bar{b}c$ ,  
 $a\bar{b}$ ,  $\bar{a}\bar{b}$ ,  $a\bar{c}$ ,  $\bar{b}\bar{c}$

Primes :  $\bar{a}\bar{b}$ ,  $a\bar{c}$ ,  $\bar{b}\bar{c}$

Essential primes :  $\bar{a}\bar{b}$ ,  $a\bar{c}$

Legal cover :  $\bar{a}\bar{b} + a\bar{c}$

# Two-Level Logic Optimization

- Input : Boolean function representation using
  - Truth table *or*
  - Set of cubes in the ON-, OFF- and DC-sets.
    - ✓ *Since the union of the ON-, OFF- and DC-sets is the universal set, specifying two sets (ex. ON-set and DC-set) is sufficient for describing a Boolean function.*
    - ✓ *For a completely specified function, only the ON-set is needed.*
- Output : optimized Boolean function in terms of number of cubes (or sometimes number of literals)
- Algorithm :
  - A) Enumerate all prime implicants of the target function
  - B) Select a minimum set of prime implicants which are required to contain the ON-set of the target function.

# Preparation : Cube Reduction

- For a pair of cubes  $A$  and  $B$ , if there exists an cube  $C$  such that  $A + B = C$ , then  $A$  and  $B$  are said to be *adjacent* and are *reducible* to  $C$ .
- On the bit-vector representations, adjacency of a pair of implicants can be determined by comparing elements in each position : if only one position is different, and if all '-' positions are same, then the implicant pair is adjacent.

|                 | $a$ | $b$ | $c$ | $d$ |  |
|-----------------|-----|-----|-----|-----|--|
| $a b c \bar{d}$ | 1   | 1   | 1   | 0   |  |
| $a b c d$       | 1   | 1   | 1   | 1   |  |
| $a b c$         | 1   | 1   | 1   | -   |  |
| $a b \bar{c}$   | 1   | 1   | 0   | -   |  |
| $a b c$         | 1   | 1   | 1   | -   |  |
| $a b$           | 1   | 1   | -   | -   |  |

reducible

don't-cares at the same position

reducible

# Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)

## 1. Prime implicant extraction

- A) From the truth table, delete minterms in OFF-set.  
(0-cube table : contains only minterm implicants)
- B)  $k=0$ .
- C) Let  $N$  be the # of rows in  $k$ -cube table.  
If  $N=0$ , then terminate.
- D) 

```
for(i = 0; i < N; i++)
  for(j = i + 1; j < N; j++)
    If rows i and j are adjacent,
      • mark these 2 rows with ' * '
      • add a reduced cube to (k+1)-cube table
      • Output part of the reduced cube is 1 if it
        intersects with the ON-set. Otherwise (if it is
        fully contained in the DC-set), it is x.
```
- E)  $k=k+1$ . Go to C).
- F) Rows whose output is 1 and without ' \* ' marked are the prime implicants.

| truth table |        | 0-cube table |        |
|-------------|--------|--------------|--------|
| $x[3:0]$    | $f[1]$ | $x[3:0]$     | $f[1]$ |
| 0000        | 0      | 0001         | 1 *    |
| 0001        | 1      | 0101         | 1 *    |
| 0010        | 0      | 0111         | x *    |
| 0011        | 0      | 1000         | 1 *    |
| 0100        | 0      | 1010         | 1 *    |
| 0101        | 1      | 1100         | 1 *    |
| 0110        | 0      | 1101         | 1 *    |
| 0111        | x      | 1110         | 1 *    |
| 1000        | 1      |              |        |
| 1001        | 0      |              |        |
| 1010        | 1      |              |        |
| 1011        | 0      |              |        |
| 1100        | 1      |              |        |
| 1101        | 1      |              |        |
| 1110        | 1      |              |        |
| 1111        | 0      |              |        |

| 1-cube table |        |
|--------------|--------|
| $x[3:0]$     | $f[1]$ |
| 0-01         | 1      |
| 01-1         | 1      |
| -101         | 1      |
| 10-0         | 1 *    |
| 1-00         | 1 *    |
| 1-10         | 1 *    |
| 110-         | 1      |
| 11-0         | 1 *    |

| 2-cube table |        |
|--------------|--------|
| $x[3:0]$     | $f[1]$ |
| 1--0         | 1      |

# Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)

**0-cube table**

| $x[3:0]$ | $f[1]$ |
|----------|--------|
| 0001     | 1 *    |
| 0101     | 1 *    |
| 0111     | x *    |
| 1000     | 1 *    |
| 1010     | 1 *    |
| 1100     | 1 *    |
| 1101     | 1 *    |
| 1110     | 1 *    |

**1-cube table**

| $x[3:0]$ | $f[1]$ |
|----------|--------|
| 0-01     | 1      |
| 01-1     | 1      |
| -101     | 1      |
| 10-0     | 1 *    |
| 1-00     | 1 *    |
| 1-10     | 1 *    |
| 110-     | 1      |
| 11-0     | 1 *    |

**2-cube table**

| $x[3:0]$ | $f[1]$ |
|----------|--------|
| 1--0     | 1      |
| 1--0     | 1      |

*identical cubes are generated here.  
(delete the 2<sup>nd</sup> cube from the list)*

# Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)

## 2. Prime implicant table generation

- A) Assign ON-set minterms to each row
- B) Assign prime implicants to each column
- C) For each minterm row, mark an 'x' at the column whose prime implicant contains this minterm

## 3. Prime implicant cover extraction containing all ON-set minterm

(*minimum unate covering problem: NP-complete*)

- A) Delete dominated prime (column) and dominating minterm (row)
- B) Extract essential primes and delete all minterms (rows) which are contained in these essential primes.
- C) Arbitrary select a prime and delete all minterms which are contained in this prime.

|          |        | prime implicant |   |   |   |   |   |   |
|----------|--------|-----------------|---|---|---|---|---|---|
|          |        | 0               | 0 | - | 1 | 1 | - | 1 |
|          |        | -               | 1 | 1 | 1 | 0 | 0 | - |
| $x[3:0]$ | $f[1]$ | 0               | - | 0 | 1 | 1 | 0 | - |
| 0001     | 1      | x               |   |   |   |   |   |   |
| 0101     | 1      | x               | x | x |   |   |   |   |
| 1000     | 1      |                 |   |   |   | x |   |   |
| 1010     | 1      |                 |   |   |   | x | x |   |
| 1100     | 1      |                 |   |   |   | x | x | x |
| 1101     | 1      |                 |   |   |   | x | x | x |
| 1110     | 1      |                 |   |   |   |   |   | x |

ON-set minterm

Techniques to reduce the problem complexity (can be applied in any order)

# Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)

## 3.A *Elimination of dominating minterms*

- **Prime set for a minterm**

A set of primes which contain the minterm

Ex: prime set for 0101 is {0-01, 01-1, -101}

- **Dominating minterm :**

On a pair of minterms, if the prime set of one of the minterm contains that of the other, the former minterm is said to be the *dominating minterm* of the latter.

- Prime set is the set of candidate for covering the particular minterm.  
*Dominating* minterms can be eliminated from the problem since the prime which covers some *dominated* minterm always covers the corresponding *dominating* minterm.

|               |             |   |   |     |
|---------------|-------------|---|---|-----|
| 0             | 0           | - | 1 | 1   |
| -             | 1           | 1 | 1 | -   |
| 0             | -           | 0 | 0 | -   |
| <b>x[3:0]</b> | <b>f[1]</b> | 1 | 1 | - 0 |
| <hr/>         |             |   |   |     |
| 0001          | 1           | x |   |     |
| 0101          | 1           | x | x | x   |
| 1000          | 1           |   |   | x   |
| 1010          | 1           |   |   | x   |
| 1100          | 1           |   | x | x   |
| 1101          | 1           |   | x | x   |
| 1110          | 1           |   |   | x   |

- Row **0101** is the dominating minterm of row **0001**.
- Row **1100** is the dominating minterm of rows **1000**, **1010** and **1110**.

# Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (5)

## 3.A *Elimination of dominated primes*

- **Minterm set for a prime**

A set of minterms which are contained by the prime

Ex: minterm set for 0-01 is {0001, 0101}

- **Dominated prime :**

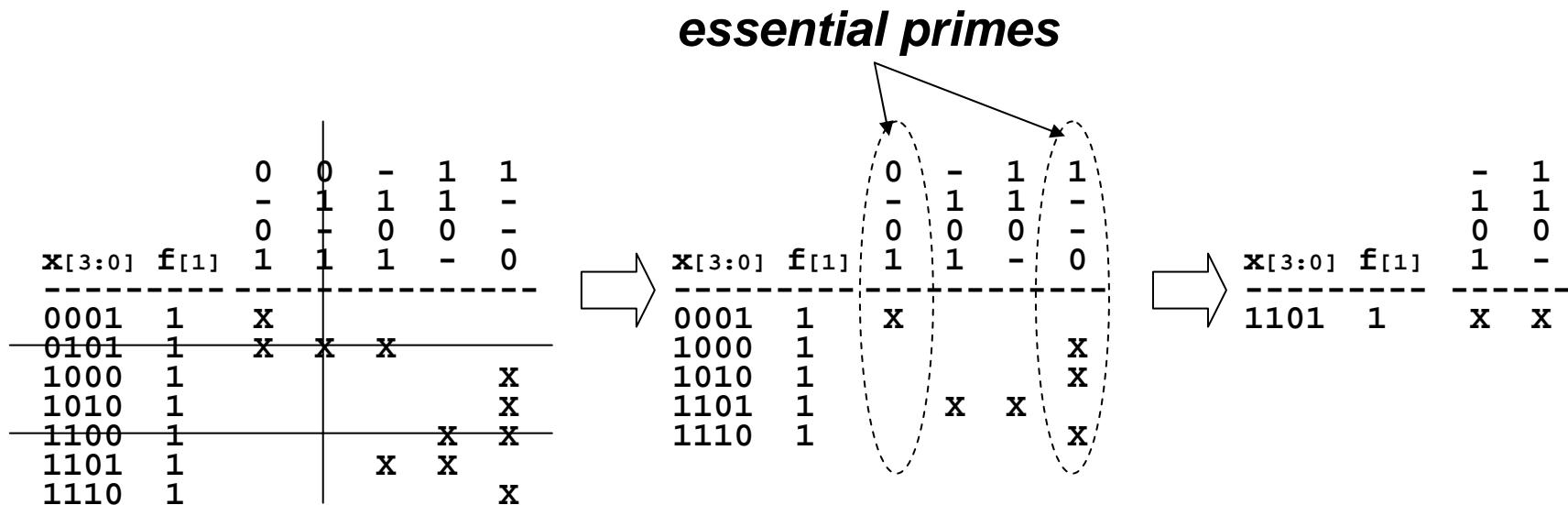
On a pair of primes, if the minterm set of one of the prime contains that of the other, the latter prime is said to be the *dominated prime* of the former.

- *Dominated* primes can be eliminated from the problem since the entire minterm set of a *dominated* prime is always covered by the *dominating* prime.

|          |        |   |   |   |   |   |  |
|----------|--------|---|---|---|---|---|--|
|          |        | 0 | 0 | - | 1 | 1 |  |
|          |        | - | 1 | 1 | 1 | - |  |
|          |        | 0 | - | 0 | 0 | - |  |
| $x[3:0]$ | $f[1]$ | 1 | 1 | 1 | - | 0 |  |
| <hr/>    |        |   |   |   |   |   |  |
| 0001     | 1      | x |   |   |   |   |  |
| 0101     | 1      | x | x | x |   |   |  |
| 1000     | 1      |   |   |   | x |   |  |
| 1010     | 1      |   |   |   | x |   |  |
| 1100     | 1      |   |   | x | x | x |  |
| 1101     | 1      |   |   | x | x | x |  |
| 1110     | 1      |   |   |   |   | x |  |

- Column **01-1** is the dominated prime of column **0-01** and **-101**.

# Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (6)



## 3.B Extraction of essential primes

- An **essential prime implicant** (or **essential prime**) is a prime that has at least one ON-set minterm which are not contained in any other primes. Such minterms are called **essential minterms**.

# Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (7)

select an arbitrary prime

| $x[3:0]$ | $f[1]$ |
|----------|--------|
| 1101     | 1      |
| 1100     | x      |
| 1011     | 1      |
| 1010     | x      |
| 0101     | 1      |
| 0100     | x      |
| 0001     | 1      |

No minterm left to cover

TERMINATE

| $x[3:0]$ | $f[1]$ |
|----------|--------|
| 1101     | 1      |
| 1100     | 0      |

obtained prime cover

| $x[3:0]$ | $f[1]$ | 0 | 0 | - | 1 | 1 |
|----------|--------|---|---|---|---|---|
| 0001     | 1      | x |   |   |   |   |
| 0101     | 1      | x | x |   | x |   |
| 1000     | 1      |   | x | x |   |   |
| 1010     | 1      |   |   | x | x |   |
| 1100     | 1      |   |   | x | x | x |
| 1101     | 1      |   |   | x | x | x |
| 1110     | 1      |   |   |   |   | x |

## 3.C Arbitrary selection of remaining primes

- If 3.A (*elimination of dominating minterms and dominated primes*) and 3.B (*essential prime extraction*) cannot further be applied, select an arbitrary remaining prime and delete the rows (minterms) which is contained in this prime. Try 3.A and 3.B again.
- If all minterms have been covered, then *TERMINATE*.
- In order to obtain an optimal cover, do all combinations of the arbitrary prime selection.

# Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)

## 1. Prime Implicant Extraction

A) Extract the prime implicants for each output separately.

| truth table |          |
|-------------|----------|
| $x[3:0]$    | $f[1:0]$ |
| 0000        | 00       |
| 0001        | 10       |
| 0010        | 00       |
| 0011        | 0x       |
| 0100        | 0x       |
| 0101        | 10       |
| 0110        | 01       |
| 0111        | x0       |
| 1000        | 11       |
| 1001        | 00       |
| 1010        | 11       |
| 1011        | 01       |
| 1100        | 1x       |
| 1101        | 11       |
| 1110        | 10       |
| 1111        | 00       |

$\xrightarrow{f[1]}$

| 0-cube table |        |  |
|--------------|--------|--|
| $x[3:0]$     | $f[1]$ |  |
| 0001         | 1 *    |  |
| 0101         | 1 *    |  |
| 0111         | x *    |  |
| 1000         | 1 *    |  |
| 1010         | 1 *    |  |
| 1100         | 1 *    |  |
| 1101         | 1 *    |  |
| 1110         | 1 *    |  |

$\xrightarrow{f[1]}$

| 1-cube table |        |  |
|--------------|--------|--|
| $x[3:0]$     | $f[1]$ |  |
| 0-01         | 1      |  |
| 01-1         | 1      |  |
| -101         | 1      |  |
| 10-0         | 1 *    |  |
| 1-00         | 1 *    |  |
| 1-10         | 1 *    |  |
| 110-         | 1      |  |
| 11-0         | 1 *    |  |

$\xrightarrow{f[1]}$

| 2-cube table |        |  |
|--------------|--------|--|
| $x[3:0]$     | $f[1]$ |  |
| 1--0         | 1      |  |

$\xrightarrow{f[0]}$

| 0-cube table |        |  |
|--------------|--------|--|
| $x[3:0]$     | $f[0]$ |  |
| 0011         | x *    |  |
| 0100         | x *    |  |
| 0110         | 1      |  |
| 1000         | 1 *    |  |
| 1010         | 1 *    |  |
| 1011         | 1 *    |  |
| 1100         | x *    |  |
| 1101         | 1 *    |  |

$\xrightarrow{f[0]}$

| 1-cube table |        |   |
|--------------|--------|---|
| $x[3:0]$     | $f[0]$ |   |
| -011         | 1      |   |
| -100         | x      | ← |
| 10-0         | 1      |   |
| 1-00         | 1      |   |
| 101-         | 1      |   |
| 110-         | 1      |   |

not a prime implicant  
because the output is 'x'

# Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)

## 2. Prime Implicant List Merging

- ✧  $m^{\text{th}}$  prime implicant list corresponds to the prime implicant list for the  $m^{\text{th}}$  output
- ✧  $m^{\text{th}}$  outputs in  $m^{\text{th}}$  prime implicant list are all 1s by definition

A) For each prime  $p$  in the all prime implicant lists

- $m^{\text{th}}$  output is 1 if there exists a prime in the  $m^{\text{th}}$  prime implicant list which contains  $p$ .
- $m^{\text{th}}$  output is 0 otherwise.

➤ This allows implicants other than the primes to be included in the candidate for minterm covering.

| prime implicant list |          |
|----------------------|----------|
| $x[3:0]$             | $f[1:0]$ |
| 0-01                 | 10       |
| 01-1                 | 10       |
| -101                 | 10       |
| 110-                 | 11       |
| 1--0                 | 10       |
| 0110                 | 01       |
| -011                 | 01       |
| 10-0                 | 11       |
| 1-00                 | 11       |
| 101-                 | 01       |
| 110-                 | 11       |

these are identical primes  
delete one of them from the list

# Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)

## 3. Prime implicant table generation

- A) Assign ON-set minterms to each row for each output
- B) Assign prime implicants to each column
- C) For each minterm row,
  - mark an 'I' at the column whose output part of the corresponding prime implicant is 0 for the corresponding output of this minterm
  - Otherwise, mark an 'X' at the column whose prime implicant contains this minterm

|          |          | 0 | 0 | - | 1 | 1 | 0 | - | 1 | 1 | 1 |
|----------|----------|---|---|---|---|---|---|---|---|---|---|
|          |          | - | 1 | 1 | 1 | - | 1 | 0 | 1 | - | 0 |
|          |          | 0 | - | 0 | 0 | - | 1 | 1 | - | 0 | 1 |
| $x[3:0]$ | $f[1:0]$ | 1 | 1 | 1 | - | 0 | 0 | 1 | 0 | 0 | - |
| 0001     | 1-       | x |   |   |   |   |   |   |   |   |   |
| 0101     | 1-       | x | x | x |   |   |   |   |   |   |   |
| 1000     | 1-       |   |   |   |   | x |   |   | x | x |   |
| 1010     | 1-       |   |   |   |   | x | x |   |   | x |   |
| 1100     | 1-       |   |   |   | x | x | x |   |   | x |   |
| 1101     | 1-       |   |   | x | x |   |   |   |   |   |   |
| 1110     | 1-       |   |   |   | x |   |   |   |   |   |   |
| 0110     | -1       |   |   |   |   |   | x |   |   |   |   |
| 1000     | -1       |   |   |   |   |   |   | x | x | x |   |
| 1010     | -1       |   |   |   |   |   |   | x | x | x | x |
| 1011     | -1       |   |   |   |   | x |   |   |   |   |   |
| 1101     | -1       |   |   |   |   |   | x |   |   |   |   |

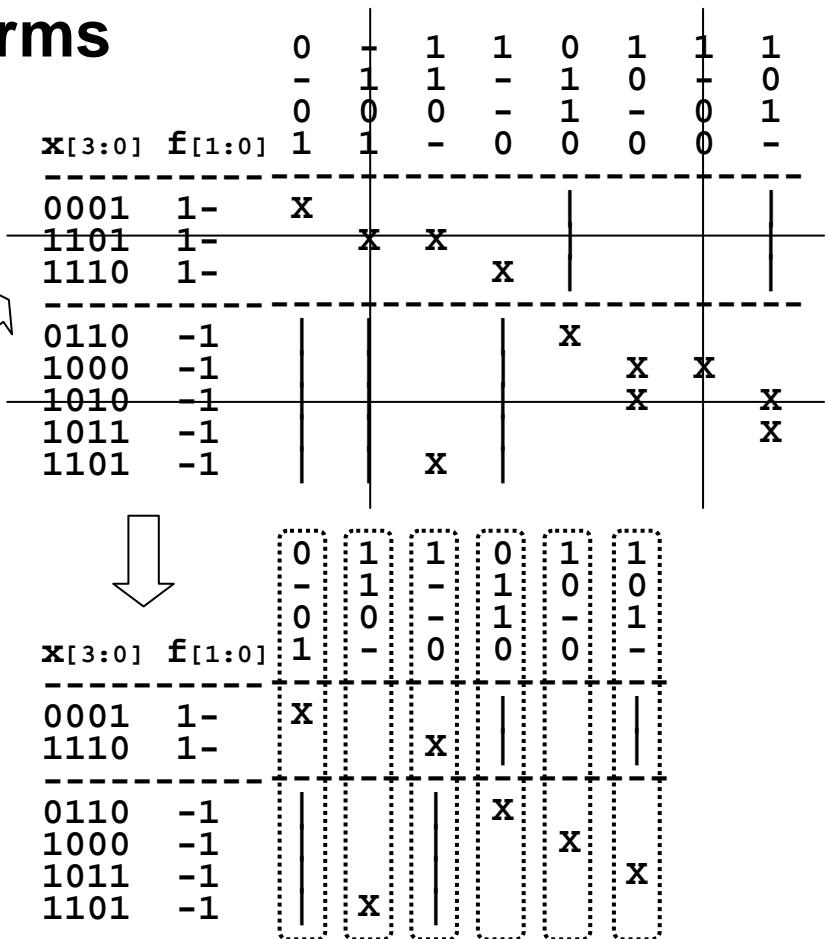
*These primes cannot be used for covering because they intersect with the OFF-set of the corresponding output*

# Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)

## 4. Prime implicant cover extraction containing all ON-set minterms

(same as the single-output case)

| $x[3:0]$ | $f[1:0]$ | 0 | 0 | - | 1 | 1 | 0 | + | 1 | 1 | 1 |
|----------|----------|---|---|---|---|---|---|---|---|---|---|
|          |          | - | 1 | 1 | 1 | - | 1 | 0 | 0 | - | 0 |
| 0001     | 1-       | x |   |   |   |   |   |   |   |   |   |
| 0101     | 1-       | x | x | x |   |   |   |   |   |   |   |
| 1000     | 1-       |   |   | x |   |   | x | x |   |   |   |
| 1010     | 1-       |   |   | x |   | x |   |   | x |   |   |
| 1100     | 1-       |   |   | x | x | x |   |   | x |   |   |
| 1101     | 1-       |   |   | x | x |   |   |   |   |   |   |
| 1110     | 1-       |   |   |   | x |   |   |   |   |   |   |
| 0110     | -1       |   |   |   |   | x |   |   |   |   |   |
| 1000     | -1       |   |   |   |   |   | x | x | x | x |   |
| 1010     | -1       |   |   |   |   |   | x | x | x | x |   |
| 1011     | -1       |   |   |   |   |   | x | x | x | x |   |
| 1101     | -1       |   |   |   |   |   | x |   |   |   |   |



# Improving Quine-McCluskey Method (Espresso-EXACT, UC Berkeley)

- **Problems**

- Need to specify all minterms
- Need a large number of cube reducibility tests.
  - Only a small portion will pass the test to generate reduced cubes.
  - Identical primes may be generated multiple times.
- Size of the prime implicant table is large since each row corresponds to minterms

- **Improvements**

- Extract all the prime implicants directly without enumerating minterms.
- Generate a *reduced prime implicant table* and solve the minimum covering problem on this smaller table.

# Direct Extraction of Prime Implicants (Preperation 1)

- **Corollary 1** : Let  $P$  be a cover for a *completely specified* function  $f$ . For any implicant  $c$  of  $f$ , there exists  $c' \in P$  such that  $c \subseteq c'$  if and only if  $P$  includes all primes of  $f$ .
- **Theorem 1** : Let  $P_f$  and  $P_g$  be the covers for *completely specified functions*  $f$ , and  $g$ , respectively. And let  $P_{fg}$  be  $P_f \cdot P_g$  that is expanded in sum-of-product form. If  $P_f$  and  $P_g$  include all primes for  $f$  and  $g$ , respectively, then  $P_{fg}$  includes all primes of function  $f \cdot g$ .
- **Proof :**
  - By definition,  $P_{fg}$  is a cover whose cube elements are the non-zero conjunctions of a cube in  $P_f$  and cube in  $P_g$ ;  
$$P_{fg} = \{c_f \cdot c_g \mid c_f \in P_f, c_g \in P_g, c_f \cdot c_g \neq 0\}.$$
  - Any implicant of the function  $f \cdot g$  is also an implicant for both  $f$  and  $g$  (if  $f \cdot g$  is true, then both  $f$  and  $g$  must be true as well). Thus for any implicant  $c$  of  $f \cdot g$ , there exists  $c_f \in P_f$  and  $c_g \in P_g$  such that  $c \subseteq c_f$  and  $c \subseteq c_g$ . Therefore  $c \subseteq c_f \cdot c_g \in P_{fg}$ .

# Direct Extraction of Prime Implicants (Preperation 2)

- **Theorem 2:** Let  $P$  be a cover for a *completely specified* function  $f$ , and  $P'$  be the cover for the complement of  $f$  (denoted as  $\bar{f}$ ) which is obtained by applying De-Morgan's Law to  $P$  and then expanding it to sum-of-product form.  $P'$  includes all primes of  $\bar{f}$ .

(Let us call this the **Negate-And-Expand Method**)

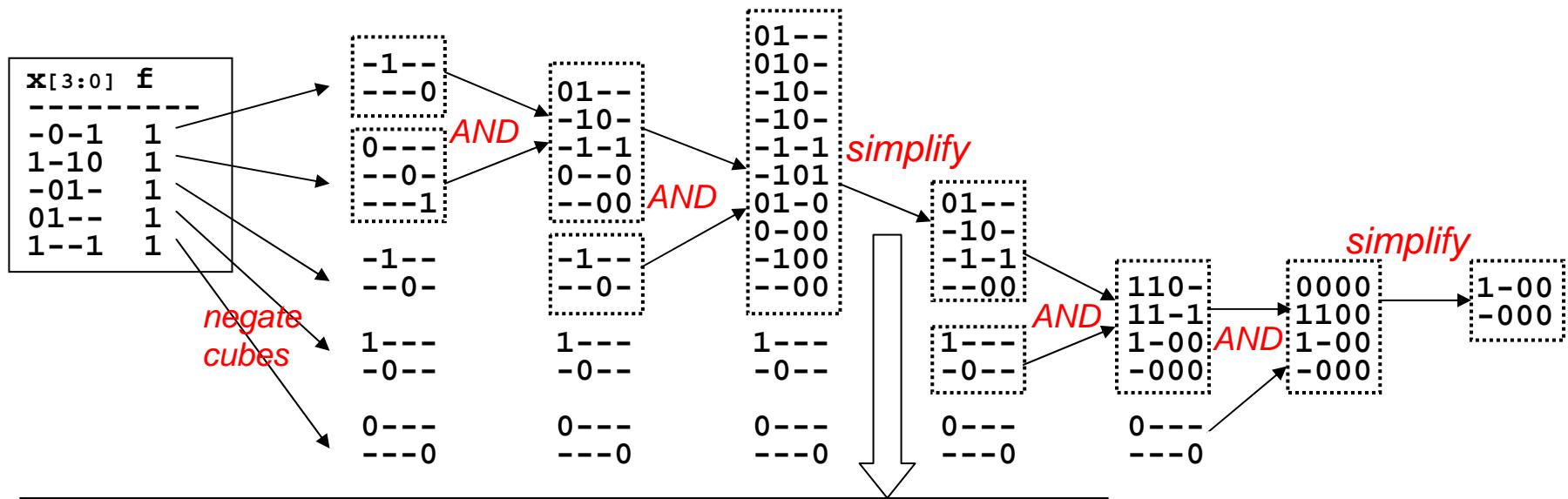
- **Proof :**

- Let  $P = c_0 + c_1 + \dots + c_n$  ( $c_i$  is a cube)
- By De-Morgan's Law :  $\bar{P} = \overline{c_0 + c_1 + \dots + c_n} = \bar{c}_0 \cdot \bar{c}_1 \cdot \dots \cdot \bar{c}_n$  ---- (1)
- A complement of a cube becomes a cover composed of single-literal cubes. Each single-literal cube is the prime of this cover.

$$\text{Ex. } \overline{x_0 \cdot \bar{x}_1 \cdot x_2} = \bar{x}_0 + x_1 + \bar{x}_2$$

- Since each term in eq(1) becomes a cover composed of primes for that cover, expanding these terms into sum-of-product form results in a cover composed of all primes of  $\bar{f}$ . (according to Theorem 1)

# Negate-And-Expand Method



## Single Cube Containment Minimality

For each cube in the list, if some other cube contains it, then delete this cube from the list.

Ex:

$01--$  contains  $010-$  (delete  $010-$ )

$-1-1$  contains  $-101$  (delete  $-101$ )

$01--$   
 $010-$  \* ←→ delete  
 $-10-$   
 $-10-$  \*  
 $-1-1$   
 $-101$  \*  
 $01-0$  \*  
 $0-00$  \*  
 $-100$  \*  
 $--00$

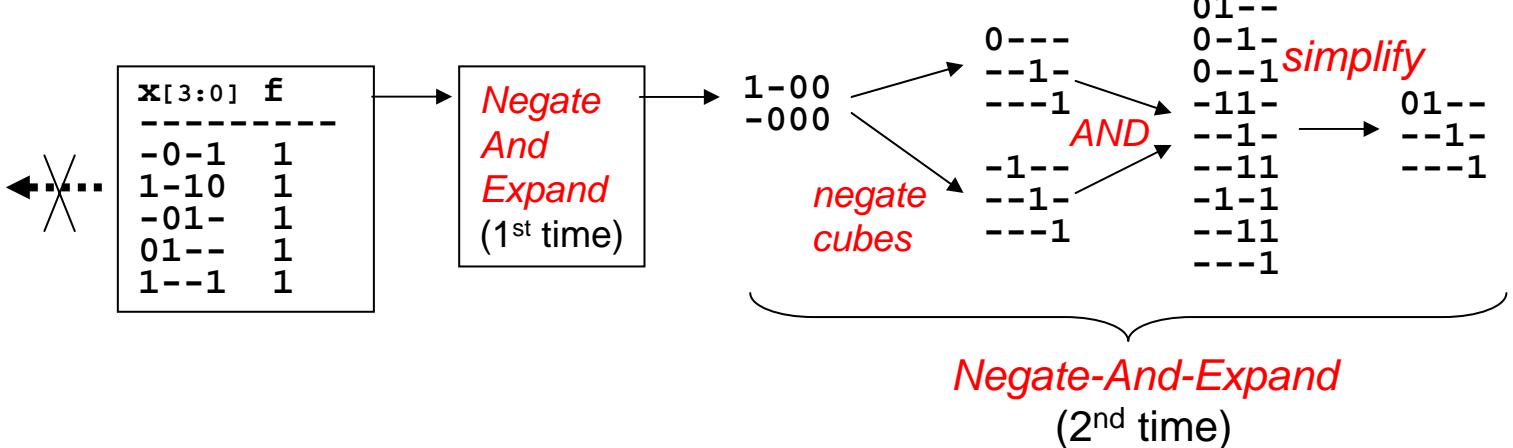
# Direct Extraction of Prime Implicants for Completely Specified Functions

- By applying *Negate-And-Expand* twice on a cover for a *completely specified* function  $f$ , the obtained cover becomes the entire set of primes for  $f$ .

Ex.  $f = x_0 \bar{x}_2 + \bar{x}_0 x_1 x_3 + x_1 \bar{x}_2 + x_2 \bar{x}_3 + x_0 x_3$

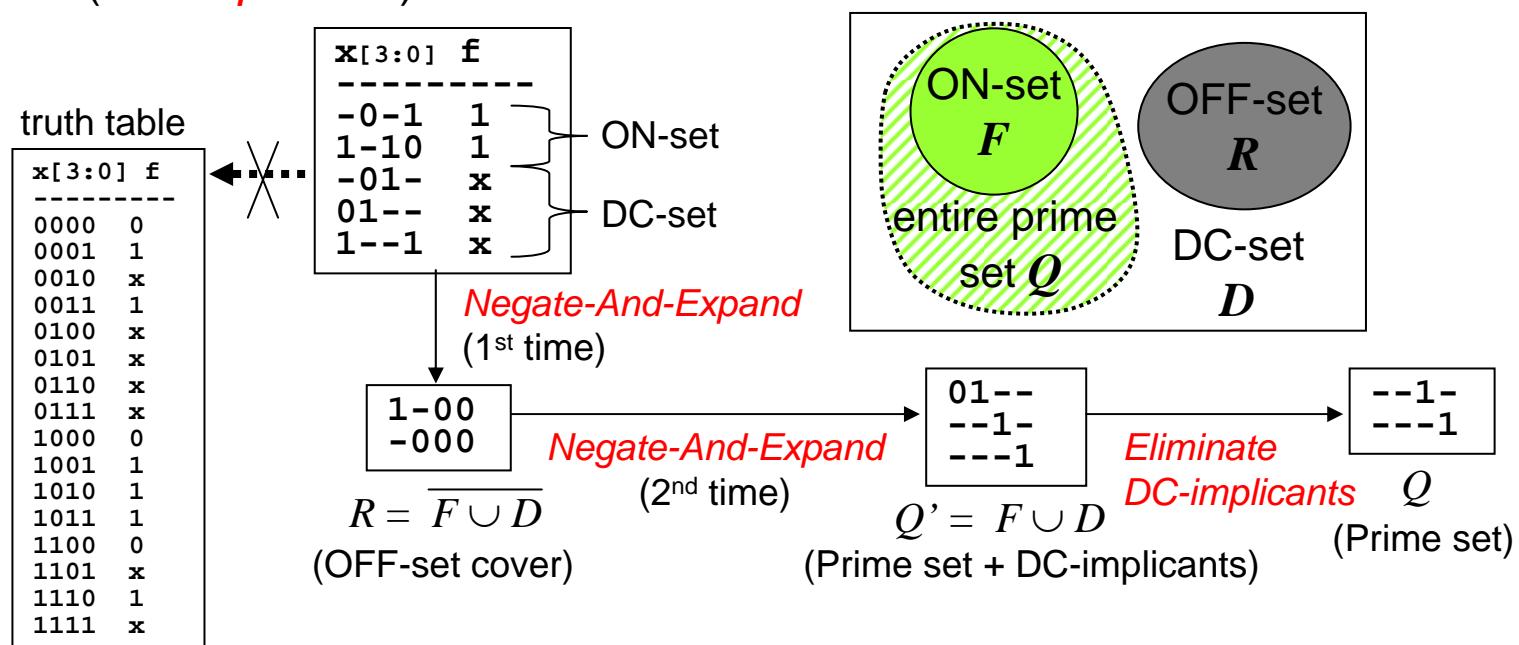
truth table

| $x[3:0]$ | $f$ |
|----------|-----|
| 0000     | 0   |
| 0001     | 1   |
| 0010     | 1   |
| 0011     | 1   |
| 0100     | 1   |
| 0101     | 1   |
| 0110     | 1   |
| 0111     | 1   |
| 1000     | 0   |
| 1001     | 1   |
| 1010     | 1   |
| 1011     | 1   |
| 1100     | 0   |
| 1101     | 1   |
| 1110     | 1   |
| 1111     | 1   |



# Direct Extraction of Prime Implicants for Incompletely Specified Functions

- For an incompletely specified function  $f$ , apply the Negate-And-Expand operations twice on the cover containing both the ON-set and DC-set. The obtained cover includes all primes of  $f$  and possibly other implicants which do not intersect with the ON-set. (*DC-implicants*)



# Function Negation Methods (1)

- Computation time of *Negate-And-Expand* operation can become very long when there are a large degree of redundancy in the cover representation of the function (i.e. a large number of small cubes).
- While the 2<sup>nd</sup> negation requires *Negate-And-Expand* operation in order to obtain the entire prime set, the obtained cover after the 1<sup>st</sup> negation (OFF-set cover) does not have to be the entire prime set for the negated function.
- *Shannon Expansion* method can be used for the 1<sup>st</sup> negation to obtain the OFF-set cover.
- The cover obtained by Shannon Expansion does not include all primes for the negated function, but its redundancy is relatively low. Also, the computational complexity is significantly lower than Negate-And-Expand Method.

# Shannon Expansion

- $f_{x_i}$  : cofactor of  $f$  with respect to factor  $x_i$

$$f_{x_i} = f(x_0, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_{n-1}), f_{\bar{x}_i} = f(x_0, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_{n-1})$$

$$\text{Ex : } f = a \bar{b} \bar{c} + a c \bar{d} + \bar{b} c d$$

$$f_a = \bar{b} \bar{c} + c \bar{d} + \bar{b} c d, f_{\bar{a}} = \bar{b} c d, f_{ac} = \bar{d} + \bar{b} d$$

- Shannon expansion :  $f = x_i f_{x_i} + \bar{x}_i f_{\bar{x}_i}$

- Shannon expansion negation :  $\bar{f} = x_i \bar{f}_{x_i} + \bar{x}_i \bar{f}_{\bar{x}_i}$

- Recursive Shannon expansion negation :

$$\text{Ex : } f = a \bar{b} \bar{c} + a b c + \bar{b} c$$

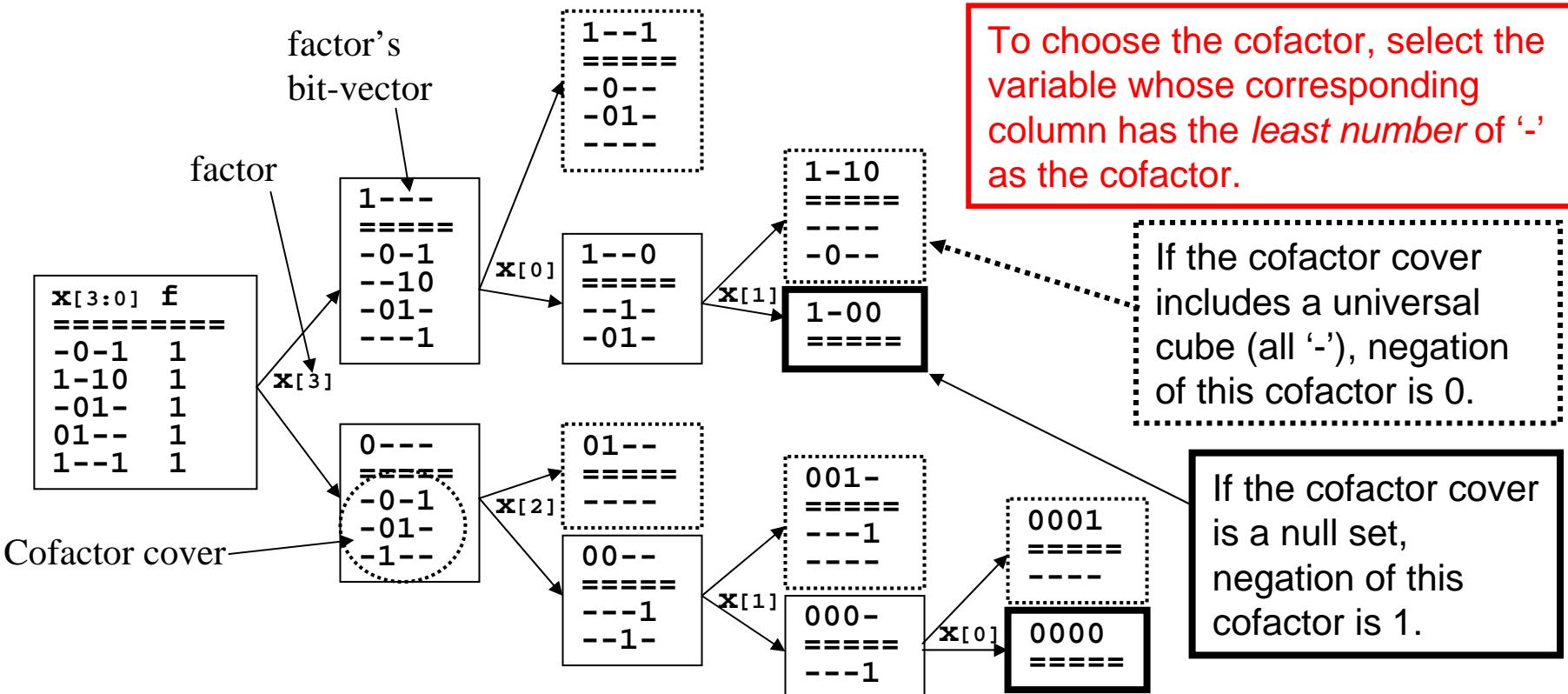
$$\bar{f} = a \bar{f}_a + \bar{a} \bar{f}_{\bar{a}} = a (\bar{b} \bar{c} + b c + \bar{b} c) + \bar{a} (\bar{b} \bar{c})$$

$$\bar{f}_a = b \bar{f}_{ab} + \bar{b} \bar{f}_{a\bar{b}} = b (\bar{c}) + \bar{b} (\bar{c} + c) = b \bar{c}$$

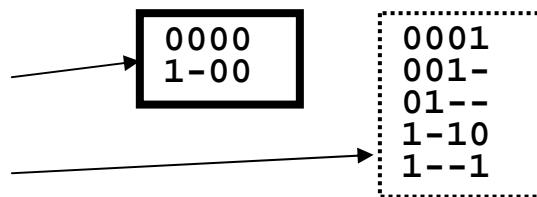
$$\bar{f}_{\bar{a}} = b \bar{f}_{\bar{a}b} + \bar{b} \bar{f}_{ab} = b (\bar{0}) + \bar{b} (\bar{c}) = b + \bar{b} \bar{c}$$

$$\bar{f} = a \bar{f}_a + \bar{a} \bar{f}_{\bar{a}} = a (b \bar{c}) + \bar{a} (b + \bar{b} \bar{c}) = a b \bar{c} + \bar{a} b + \bar{a} \bar{b} \bar{c}$$

# Function Negation by Shannon Expansion (1)



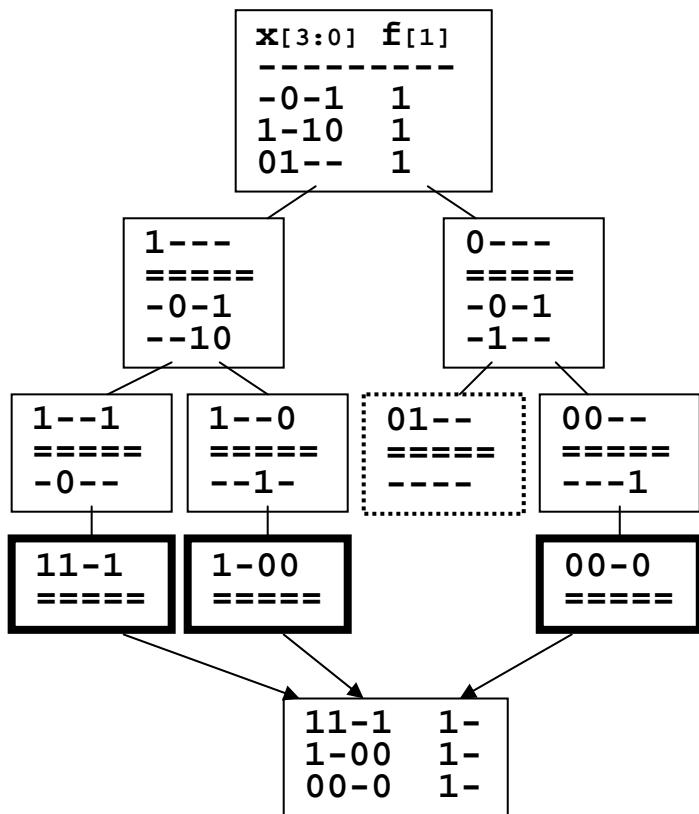
- The set of factors whose leaf cofactor is 0 is equivalent to the OFF-set cover.
- The set of factors whose leaf cofactor is 1 is equivalent to the ON-set cover.



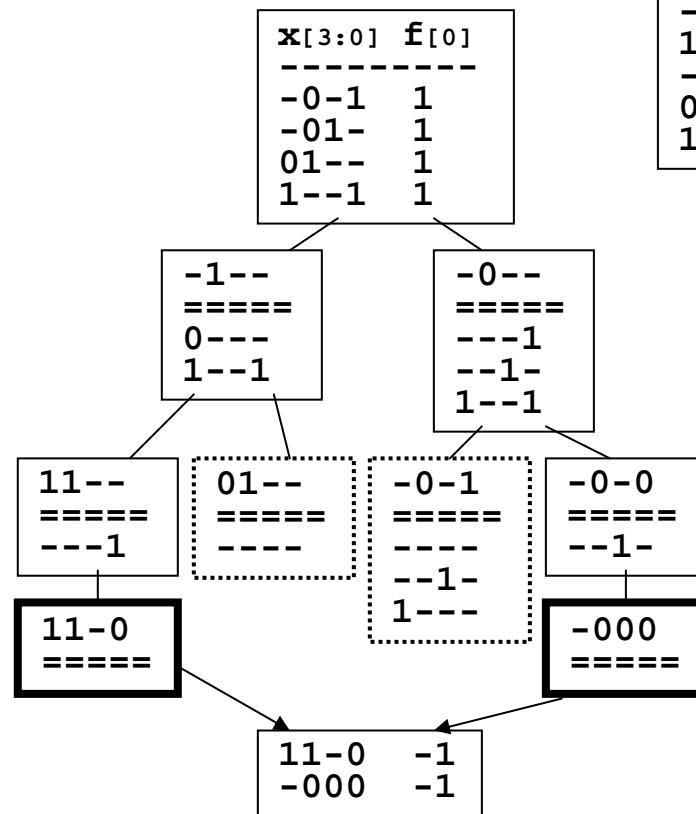
# Shannon Expansion on Multiple-Output Function

$$f_1 = x_0x_2 + x_0x_1x_3 + x_2x_3$$

$$f_0 = x_0\overline{x}_2 + x_1\overline{x}_2 + x_2\overline{x}_3 + x_0x_3$$



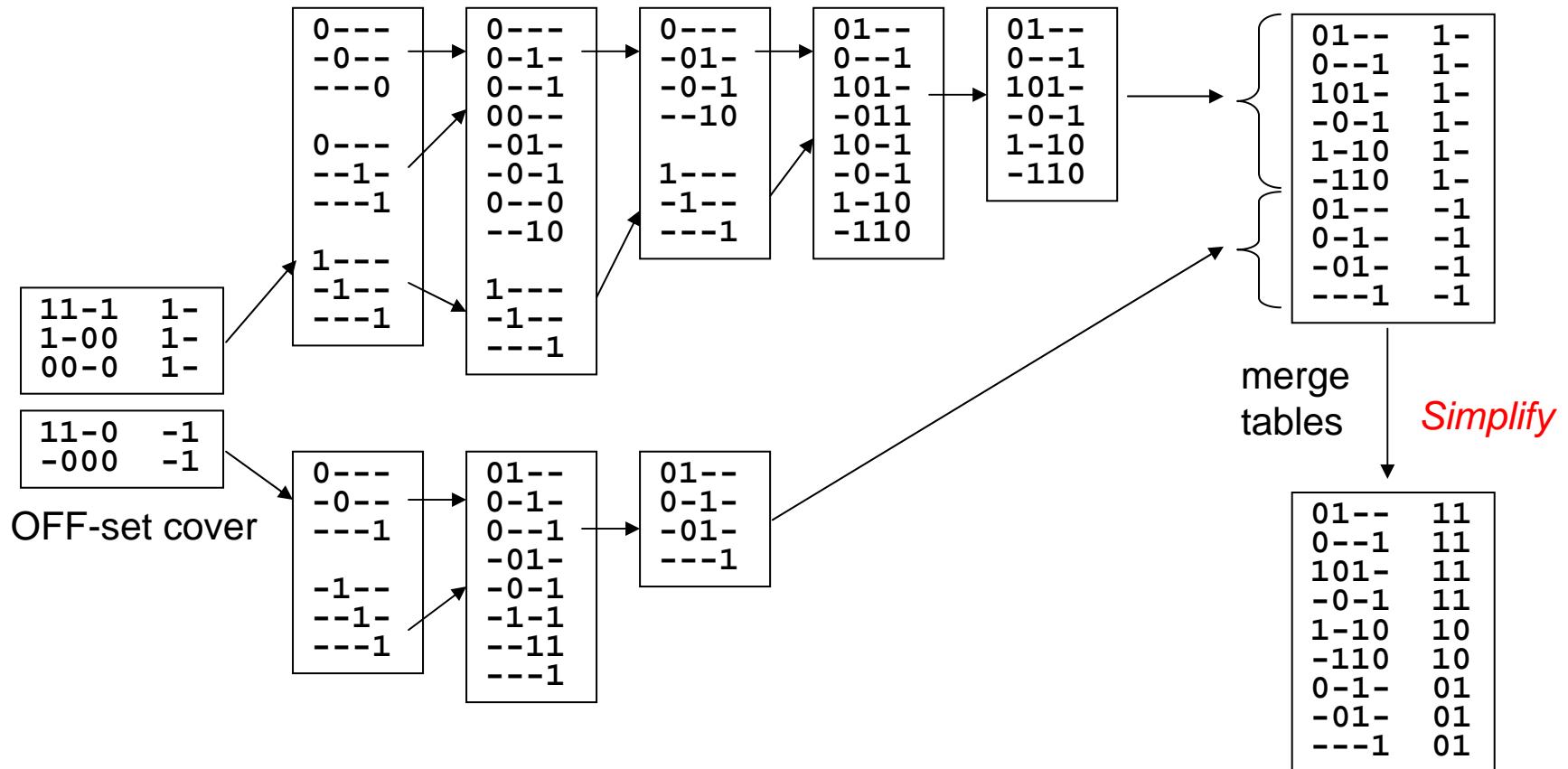
OFF-set cover for  $f_1$



OFF-set cover for  $f_0$

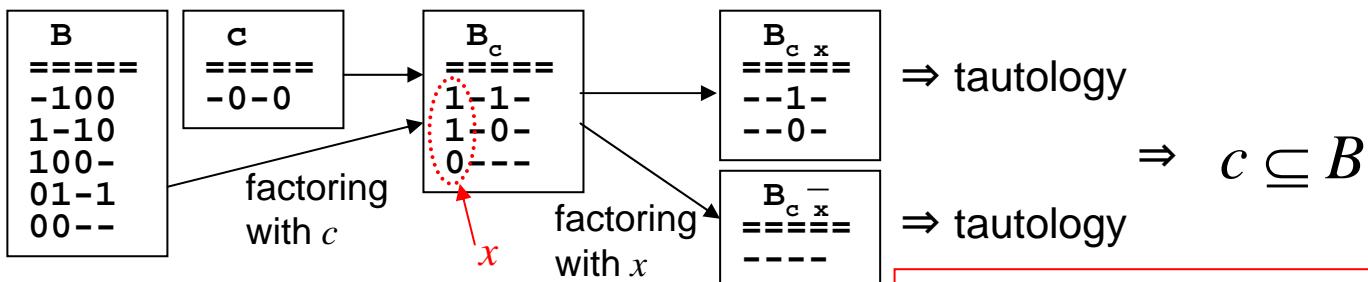
| $x[3:0]$ | $f[1:0]$ |
|----------|----------|
| - - - -  | - - - -  |
| -0-1     | 11       |
| 1-10     | 10       |
| -01-     | 01       |
| 01--     | 11       |
| 1--1     | 01       |

# Negate-And-Expand Method for Multiple-Output Functions



# Reduced Prime Implicant Table Generation (1)

- Essential prime set  $E_r = \{c \mid c \in Q, F \not\subseteq Q - c\}$  :
  - $c$  is an essential prime if the prime set excluding  $c$  (" $Q - c$ " denotes the set  $Q$  whose element  $c$  is eliminated) does not contain the ON-set cover  $F$ . (therefore  $c$  is *essential* for covering  $F$ )
  - Checking  $F \cap c \not\subseteq Q - c$  (instead of  $F \not\subseteq Q - c$ ) is sufficient.
- Containment check
  - $A \subseteq B \Leftrightarrow c \subseteq B$  for  $\forall c \in A$  ( $A, B$  : cover,  $c$  : cube)
    - ✓ In order for a cover to be contained in another (partial order), all cube included in the former needs to be contained in the latter.
  - $c \subseteq B \Leftrightarrow B_c \equiv 1$  ( $B_c$  : cofactor of  $B$  with respect to cube  $c$ )
  - $B \equiv 1 \Leftrightarrow B_x \equiv 1 \wedge B_{\bar{x}} \equiv 1$  (tautology check by recursion)



*Recall:  $c \subseteq B \Rightarrow c \cdot B = c$*

# Reduced Prime Implicant Table Generation (2)

- Relatively redundant prime set  $R_r = Q - E_r$
- Totally redundant prime set  $R_t = \{c \mid c \in R_r, c \subseteq E_r\}$
- Partially redundant prime set  $R_p = R_r - R_t$
- On obtaining a minimal prime set which covers the ON-set  $F$ 
  - ✓  $E_r$  is always included
  - ✓  $R_t$  is never included
  - ✓  $R_p$  is the portion of the total prime set which is considered in the minimum covering problem.
- Each element of  $R_p$  corresponds to the columns of the reduced prime implicant table.
- Minterm set  $M_p$  which needs to be covered (rows of the reduced prime implicant table)
  - ✓  $M_p = \overline{E_r} \cap R_p$
  - ✓  $m \cap E_r = \emptyset (m \in M_p)$

# Reduced Prime Implicant Table Generation (3)

- Computation of minterm set  $M_p$  (*actually, each row may represent a collection of minterms*)
  - For each cube  $c \in R_p$ , consider the set  $R' = R_p - c$ .
  - Recursively divide  $c$  into smaller cubes at its don't-care variables
    - Ex. 0-1-  $\rightarrow$  (001-, 011-)  $\rightarrow$  ((0010, 0011), (0110, 0111))
  - On each divided cubes  $c'$ :
    - If  $c' \subseteq E_r$ , then  $c'$  is not included in  $M_p$ .
    - If there exists a cube  $d \in R'$  such that  $c' \subseteq d$ , then all minterms included in  $c'$  is covered by the prime  $d$ . If so, add  $c'$  to the row and mark 'X' to all columns which contain  $c'$ . (Note that there may be several cubes which contain  $c'$ )  
If one of the two conditions above is satisfied, then  $c'$  does not have to be divided anymore.

# Reduced Prime Implicant Table Generation (4)

| $E_r$ |
|-------|
| ===== |
| 01--  |
| 10--  |

$$c = 0-1- \rightarrow 001- \subseteq 011- \in E_r$$

| $R'$  |
|-------|
| ===== |
| -01-  |
| -101  |
| 1-01  |

|      |   |   |   |
|------|---|---|---|
| 0    | - | - | 1 |
| -    | 0 | 1 | - |
| 1    | 1 | 0 | 0 |
| -    | - | 1 | 1 |
| 001- | x | x |   |

| $R_p$ |
|-------|
| ===== |
| 0-1-  |
| -01-  |
| -101  |
| 1-01  |

$$c = -01- \rightarrow 001- \subseteq 101- \in E_r$$

| $R'$  |
|-------|
| ===== |
| 0-1-  |
| -101  |
| 1-01  |

|      |   |   |   |
|------|---|---|---|
| 0    | - | - | 1 |
| -    | 0 | 1 | - |
| 1    | 1 | 0 | 0 |
| -    | - | 1 | 1 |
| 001- | x | x |   |

$$c = -101 \rightarrow 0101 \subseteq 1101 \in E_r$$

| $R'$  |
|-------|
| ===== |
| 0-1-  |
| -01-  |
| 1-01  |

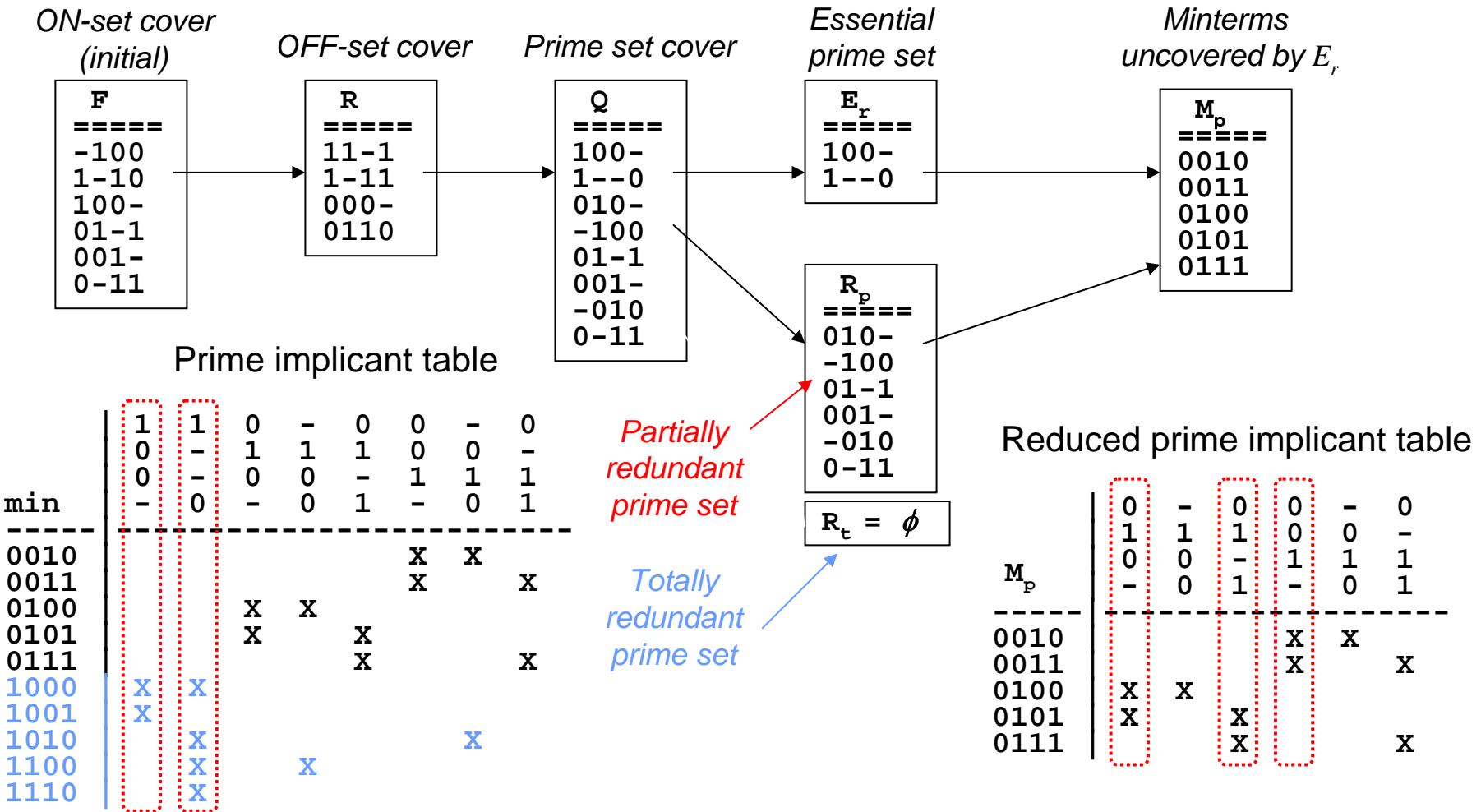
|      |   |   |   |
|------|---|---|---|
| 0    | - | - | 1 |
| -    | 0 | 1 | - |
| 1    | 1 | 0 | 0 |
| -    | - | 1 | 1 |
| 001- | x | x | x |

$$c = 1-01 \rightarrow 1001 \subseteq 1101 \in E_r$$

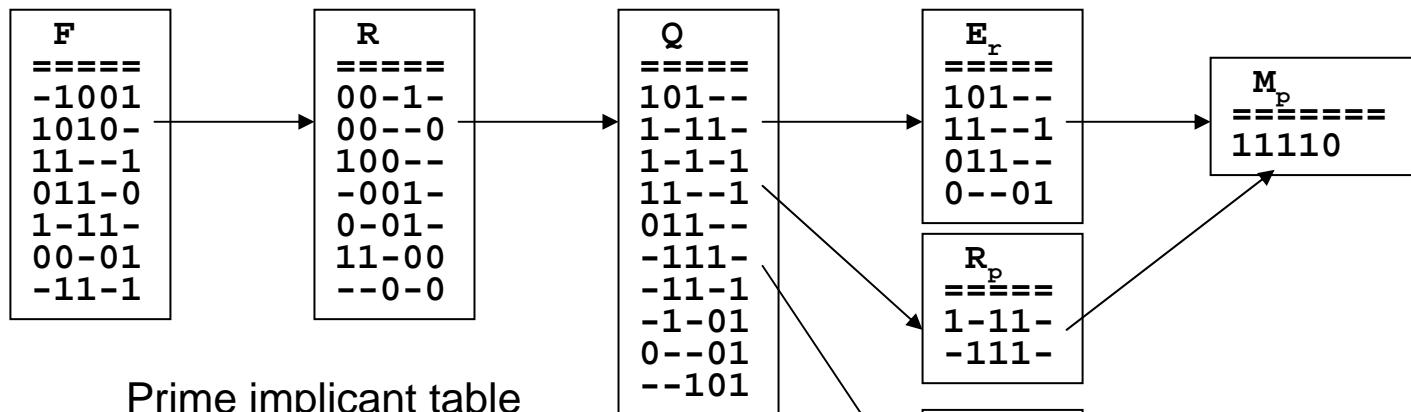
| $R'$  |
|-------|
| ===== |
| 0-1-  |
| -01-  |
| -101  |

|      |   |   |   |
|------|---|---|---|
| 0    | - | - | 1 |
| -    | 0 | 1 | - |
| 1    | 1 | 0 | 0 |
| -    | - | 1 | 1 |
| 001- | x | x | x |

# Reduced Prime Implicant Table Generation (5)



# Reduced Prime Implicant Table Generation (6)



Prime implicant table

|       | 1 | 1 | 1 | 1 | 0 | - | - | - | 0 | - | - |
|-------|---|---|---|---|---|---|---|---|---|---|---|
| min   | 1 | 0 | - | 1 | 1 | 1 | 1 | 1 | - | - | - |
| 00001 |   |   |   |   |   |   |   |   |   |   |   |
| 00101 |   |   |   |   |   |   |   |   |   |   |   |
| 01001 |   |   |   |   |   |   |   |   |   |   |   |
| 01100 |   |   |   |   |   |   |   |   |   |   |   |
| 01101 |   |   |   |   |   |   |   |   |   |   |   |
| 01110 |   |   |   |   |   |   |   |   |   |   |   |
| 01111 |   |   |   |   |   |   |   |   |   |   |   |
| 10100 |   |   |   |   |   |   |   |   |   |   |   |
| 10101 |   |   |   |   |   |   |   |   |   |   |   |
| 10110 |   |   |   |   |   |   |   |   |   |   |   |
| 10111 |   |   |   |   |   |   |   |   |   |   |   |
| 11001 |   |   |   |   |   |   |   |   |   |   |   |
| 11011 |   |   |   |   |   |   |   |   |   |   |   |
| 11101 |   |   |   |   |   |   |   |   |   |   |   |
| 11110 |   |   |   |   |   |   |   |   |   |   |   |
| 11111 |   |   |   |   |   |   |   |   |   |   |   |

Reduced prime implicant table

|       |   |   |   |
|-------|---|---|---|
| $M_p$ | 1 | - | 1 |
| 11110 | - | x | x |

# Summary on Two-Level Logic Optimization

- Two-level logic optimization is first proposed by Quine and McCluskey, and since then has been studied widely.
- Based on Quine-McCluskey method, improvements have been made in prime extraction, prime table generation, covering techniques to reduce the computation time.
- Even though the computational complexity is NP-complete (due to prime covering problem), near-optimal solution can be obtained in short time.
- There are heuristic algorithms which solve the prime extraction/prime covering problems iteratively.